首页 | 本学科首页   官方微博 | 高级检索  
     检索      

西宁盆地黄土区边坡土体含水量对植物根-土复合体抗剪强度影响的试验研究
引用本文:李姜瑶,余冬梅,张西营,胡夏嵩,刘亚斌,周林虎,李丹.西宁盆地黄土区边坡土体含水量对植物根-土复合体抗剪强度影响的试验研究[J].工程地质学报(英文版),2022,30(2):281-292.
作者姓名:李姜瑶  余冬梅  张西营  胡夏嵩  刘亚斌  周林虎  李丹
作者单位:①.中国科学院青海盐湖研究所,盐湖资源综合高效利用重点实验室,西宁 810008,中国
基金项目:次青藏高原综合科学考察研究项目;青海省自然科学基金;国家自然科学基金;中国科学院"百人计划"
摘    要:为进一步研究植物根系的固土护坡力学效应,探讨边坡土体含水量对植物根系增强土体抗剪强度的影响,以西宁盆地长岭沟流域作为研究区,选取两种优势灌木植物柠条锦鸡儿(Caragana korshinskii Kom.)、白刺(Nitraria sphaerocarpa Maxim.)和两种优势草本植物芨芨草(Achnatheru...

关 键 词:西宁盆地  寒旱环境  土体含水量  根-土复合体  抗剪强度
收稿时间:2020-01-08

EFFECT OF SOIL MOISTURE CONTENT ON SHEAR STRENGTH OF ROOTED SOIL IN LOESS REGIONS OF XINING BASIN
LI Jiangyao,YU Dongmei,ZHANG Xiying,HU Xiasong,LIU Yabin,ZHOU Linhu,LI Dan.EFFECT OF SOIL MOISTURE CONTENT ON SHEAR STRENGTH OF ROOTED SOIL IN LOESS REGIONS OF XINING BASIN[J].Journal of Engineering Geology,2022,30(2):281-292.
Authors:LI Jiangyao  YU Dongmei  ZHANG Xiying  HU Xiasong  LIU Yabin  ZHOU Linhu  LI Dan
Institution:①.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China②.Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining 810008, China③.University of Chinese Academy of Sciences, Beijing 100049, China④.Department of Geology Engineering, Qinghai University, Xining 810016, China
Abstract:This paper aims to deeply investigate the role of vegetation roots in faxing soil and increasing soil strength and probe into the influence of soil moisture content on soil strength. It selects Changlinggou catchment in Xining Basin as the tested site. Four types of local vegetation were chosen as the tested species. They are Caragana korshinskii Kom., Nitraria sphaerocarpa Maxim., Achnatherum splendens(Trin.)Nevski, and Agropyron trachycaulum Linn. Gaertn. Five sets of undisturbed and remolded rooted soil with soil moisture contents increasing from 6% to 22% were prepared for indoor direct shear tests. The results show that all of the vegetation roots possess a capacity of significantly resisting deformation of rooted soil, but as moisture contents increase, the root role in resisting soil deformation is reduced. At the same moisture content, the cohesion of rooted soil is generally larger than that of non-rooted soil. The growth rate of cohesion is 1.94~12.17 kPa and the growth amplitude is 34.50% ~360.69% in comparison to the non-rooted soil. However, the same trend did not occur in the internal friction angle. A binomial function can describe the relation of soil moisture content with its cohesion for all of the soil. Moreover, as the moisture content increases from 6% to 22%, the cohesion declines from 28.50% to 61.78% and the internal friction angle declines by 38.73%. The works possess theoretical and practical significance on further exploring the factors influencing the shear strength of herb and shrub root-soil composite systems, adopting dominant local plants to carry out slope protection, and effectively preventing and controlling regional soil erosion, shallow landslide and other geological disasters.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《工程地质学报(英文版)》浏览原始摘要信息
点击此处可从《工程地质学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号