首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensitivity to domain size of mid-latitude summer simulations with a regional climate model
Authors:Martin Leduc  René Laprise  Mathieu Moretti-Poisson  Jean-Philippe Morin
Institution:1. Centre ESCER (étude et Simulation du Climat à l’échelle Régionale), Université du Québec à Montréal, B.P. 8888, Succ. Centre-ville, Montréal, QC, H3C 3P8, Canada
Abstract:The issue of Regional Climate Model (RCM) domain size is studied here by using a perfect-model approach, also known as the Big-Brother experiment. It is known that the control exerted by the lateral boundary conditions (LBC) on nested simulations increases when reducing the domain size. The large-scale component of the simulation that is forced by the LBC influences the small-scale features that develop along the large-scale flow. Small-scale transient eddies need space and time to develop sufficiently however, and small domains can impede their development. Our tests performed over eastern North America in summer reveal that the small-scale features are systematically underestimated over the entire domain, even for domain as large as 140 by 140 grid points. This result differs from that obtained in winter where the small scales were mainly underestimated on the west (inflow) side of the domain. This difference is due to the circulation regime over Eastern Canada, which is characterized by weak and variable flow in summer, but strong and westerly flow in winter. For both seasons, the small-scale transient-eddy amplitudes are systematically underestimated at higher levels, but this problem is less severe in summer. Overall the model is more skilful in regenerating the small scales in summer than in winter for comparable domain sizes, which can be related to the weaker summer flow and stronger physical processes occurring in this season.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号