首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The rheology of crystal-bearing basaltic magmas from Stromboli and Etna
Authors:A Vona  C Romano  D Giordano
Institution:a Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, L.go San leonardo Murialdo 1, 00146 Rome, Italy
b Department of Earth and Environmental Sciences, Ludwig Maximilians University, Theresienstr. 41/III, 80333 Munich, Germany
c Institute of Earth Sciences “Jaume Almera”, CSIC, Lluis Solé i Sabaris s/n, 08028 Barcelona, Spain
Abstract:Our ability to forecast volcanic hazards at active volcanoes stems from our knowledge of parameters affecting eruption dynamics. Persistent activity displayed by basaltic volcanic systems, such as Etna and Stromboli, is governed mainly by the textural evolution and rheological properties of eruptive products. Here, we investigate the high temperature (1131 °C < T < 1187 °C) rheological behavior and textural evolution of remelted natural basaltic magmas from Stromboli and Etna volcanic systems upon cooling and crystallization at atmospheric conditions. The pure liquid and subliquidus isothermal viscosities are investigated using a concentric cylinder apparatus by varying strain rate applied to the investigated materials. Detailed textural analysis has been performed in order to evaluate the effect of crystal distribution on the rheological evolution of magmas. At subliquidus conditions, the mineralogical assemblage is dominated by the presence of spinel and plagioclase with the occurrence of stable clinopyroxene only at the lowest temperatures (1157 and 1131 °C for the Stromboli and the Etna samples, respectively). The overall crystal fraction (?) varies between 0.06 and 0.27. In the high T regime the viscous response to applied stress and strain rate is strongly affected by the presence of even small amounts of crystals. Large discrepancies between measured and predicted viscosities obtained using the Einstein-Roscoe (ER) equation are also found at low crystal fractions. We find here that, at the investigated conditions, the physical effect caused by the presence of elongated crystals is orders of magnitude higher than that predicted by existing models which only account for spherical particles. It also appears that a weak shear thinning behavior occurs at the lowest temperatures investigated. Crystal shape and, with it, the strain-rate dependence of the rheological properties appear to play primary roles in influencing the transport properties of these basaltic magmas.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号