首页 | 本学科首页   官方微博 | 高级检索  
     

基于优化的BP神经网络地层可钻性预测模型
引用本文:董青青,梁小丛. 基于优化的BP神经网络地层可钻性预测模型[J]. 探矿工程, 2012, 39(11): 26-28
作者姓名:董青青  梁小丛
作者单位:中国地质大学(武汉)工程学院,湖北武汉430074
摘    要:提出了一种粒子群算法(PSO)优化的BP网络模型预测地层可钻性的新方法。利用粒子群算法优化BP网络模型的参数,避免了BP网络陷入局部极小值的缺点,提高了模型的预测速度和精度。结合钻探实例,利用测井资料和地层可钻性级别的关系建立了可钻性级别实时预测模型,并将该模型与传统的BP网络进行对比,结果表明,该模型优于BP网络,具有较高的精度和较快的收敛速度,有一定的适用性。

关 键 词:地层可钻性  BP网络模型  粒子群算法  预测模型
收稿时间:2012-07-07
修稿时间:2012-07-07

A Model for Predicting Formation Drillability Based on Optimized BP Neural Network
DONG Qing-qing and LIANG Xiao-cong. A Model for Predicting Formation Drillability Based on Optimized BP Neural Network[J]. Exploration Engineering:Rock & Soil Drilling and Tunneling, 2012, 39(11): 26-28
Authors:DONG Qing-qing and LIANG Xiao-cong
Affiliation:(Engineering College, China University of Geosciences, Wuhan Hubei 430074, China)
Abstract:A new method for predicting formation drillablity was proposed according to the theory of BP networks based on PSO. The use of PSO optimizing the parameters of BP networks is to improve the convergence speed and precision of BP neural networks. Combining with the examples of drilling and based on the relationship of log information formation drilla- bility grade, a real-time formation drillability grade model was established. The results show that the model is superior to BP network with higher accuracy and faster convergence rate and it is an effective way to predict formation drillablity.
Keywords:formation drillability  BP network model  PSO  prediction model
本文献已被 维普 等数据库收录!
点击此处可从《探矿工程》浏览原始摘要信息
点击此处可从《探矿工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号