首页 | 本学科首页   官方微博 | 高级检索  
     

高光谱遥感图像混合像元分解的群智能算法
引用本文:高连如,孙旭,罗文斐,唐茂峰,张兵. 高光谱遥感图像混合像元分解的群智能算法[J]. 南京气象学院学报, 2018, 10(1): 81-91
作者姓名:高连如  孙旭  罗文斐  唐茂峰  张兵
作者单位:中国科学院遥感与数字地球研究所, 北京, 100094,中国科学院遥感与数字地球研究所, 北京, 100094,华南师范大学 地理科学学院, 广州, 510631,中国科学院遥感与数字地球研究所, 北京, 100094,中国科学院遥感与数字地球研究所, 北京, 100094;中国科学院大学, 北京, 100049
基金项目:国家自然科学基金(41571349,91638201)
摘    要:近年来,通过群智能算法求解组合优化或连续优化问题以实现高光谱图像混合像元分解方面取得了重要进展和显著成果.本文首先回顾了高光谱图像混合像元分解的研究背景和群智能算法的特点,然后梳理了光谱混合模型及对应的最优化模型,进而介绍了基于群智能算法的端元提取和丰度反演方法,最后通过2组实验比较了群智能算法和其他传统算法在端元提取和丰度反演方面的精度,对基于群智能算法的混合像元分解效果进行了评价.另外,本文也对群智能算法在高光谱图像信息提取中应用的优势和存在的问题进行了总结.

关 键 词:高光谱图像  混合像元分解  群智能  端元提取  丰度反演
收稿时间:2017-11-10

Swarm intelligence algorithms for spectral unmixing in hyperspectral image
GAO Lianru,SUN Xu,LUO Wenfei,TANG Maofeng and ZHANG Bing. Swarm intelligence algorithms for spectral unmixing in hyperspectral image[J]. Journal of Nanjing Institute of Meteorology, 2018, 10(1): 81-91
Authors:GAO Lianru  SUN Xu  LUO Wenfei  TANG Maofeng  ZHANG Bing
Affiliation:Institute of Remote sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094,Institute of Remote sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094,School of Geographical Sciences, South China Normal University, Guangzhou 510631,Institute of Remote sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094 and Institute of Remote sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094;University of Chinese Academy of Sciences, Beijing 100049
Abstract:In recent years,swarm intelligence algorithms have made important progress and remarkable achievements in spectral unmixing of hyperspectral image by solving combinatorial optimization or continuous optimization problems.In this paper,the background of the research of spectral unmixing in hyperspectral image and the characteristics of swarm intelligence algorithm were reviewed firstly,and then the optimization model and the spectral mixture model were teased out correspondingly.Then the endmember extraction and abundance inversion method based on swarm intelligent algorithms were introduced.Finally the accuracy of spectral unmixing achieved by swarm intelligence algorithms and other traditional algorithms was evaluated through two experiments.In addition,the advantages and problems of swarm intelligence algorithm in hyperspectral image information extraction were also summarized in this paper.
Keywords:hyperspectral image  spectral unmixing  swarm intelligence  endmember extraction  abundance inversion
点击此处可从《南京气象学院学报》浏览原始摘要信息
点击此处可从《南京气象学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号