首页 | 本学科首页   官方微博 | 高级检索  
     

基于属性关系深度挖掘的试题知识点标注模型
引用本文:何彬,李心宇,陈蓓蕾,夏盟,曾致中. 基于属性关系深度挖掘的试题知识点标注模型[J]. 南京气象学院学报, 2019, 11(6): 727-734
作者姓名:何彬  李心宇  陈蓓蕾  夏盟  曾致中
作者单位:华中师范大学 国家数字化学习工程技术研究中心, 武汉, 430079,华中师范大学 国家数字化学习工程技术研究中心, 武汉, 430079,湖北大学 教育学院, 武汉, 430062,华中师范大学 国家数字化学习工程技术研究中心, 武汉, 430079,华中师范大学 国家数字化学习工程技术研究中心, 武汉, 430079
基金项目:国家自然科学基金(61877026);中央高校基本科研业务费资助项目(CCNU19QN036,CCNU19QN031)
摘    要:在各类在线学习系统中,为了给学生提供优质的学习资源,一个基础性的任务是对大量未标注的试题进行知识点标注.已有标注方法通常基于人工专家标注或者采用传统机器学习方法.在实际应用中,这些方法普遍存在成本过高、标注精准度不足等局限.为此,本文提出了一种基于属性关系深度挖掘的试题知识点标注模型.首先,利用句法语义模型和结构语义模型分别从试题文本和试题图形中抽取试题的显性属性关系.然后,利用蒙特卡罗树搜索构建问题求解框架,挖掘试题的隐含属性关系.最后,结合学科知识图谱,将属性关系映射到知识图谱空间,生成试题知识点.实验结果表明,所提出的方法能够有效地进行试题知识点标注,将对学生认知诊断、个性化试题推荐等具有一定的实际应用价值.

关 键 词:知识点标注  属性关系挖掘  句法语义模型  结构语义模型  蒙特卡罗树搜索
收稿时间:2019-10-15

Knowledge points annotation based on attribute relation mining
HE Bin,LI Xinyu,CHEN Beilei,XIA Meng and ZENG Zhizhong. Knowledge points annotation based on attribute relation mining[J]. Journal of Nanjing Institute of Meteorology, 2019, 11(6): 727-734
Authors:HE Bin  LI Xinyu  CHEN Beilei  XIA Meng  ZENG Zhizhong
Affiliation:National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079,National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079,Institute of Education, Hubei University, Wuhan 430062,National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079 and National Engineering Research Center for E-Learning, Central China Normal University, Wuhan 430079
Abstract:Online learning systems need to perform the fundamental task of annotating a large number of raw questions to be able to provide students with learning materials of high quality.The existing methods used for this task rely either on labeling by human experts or traditional ways of machine learning.In practical applications,the existing methods are limited by being either labor intensive or inaccurate.In this paper,we propose a method based on the mining of attribute relations to annotate the knowledge points of questions.We first define and extract the explicit attribute relations from the text and diagram of a given question.We then extract the implicit attribute relations of the question using Monte Carlo Tree Search (MCTS) algorithm.Next,we map the attribute relations to the knowledge graph space using a transform model,to generate the knowledge points of the question.The experimental results confirm the effectiveness of the proposed method,which demonstrates practicality for the cognitive diagnosis of students and personalized questions recommendation.
Keywords:knowledge points annotation  attribute relation mining  syntax-semantics model  structure-semantics model  Monte Carlo Tree Search (MCTS)
点击此处可从《南京气象学院学报》浏览原始摘要信息
点击此处可从《南京气象学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号