首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A numerical study of flexural buckling of foliated rock slopes
Authors:D P Adhikary  H‐B Mühlhaus  A V Dyskin
Abstract:The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter‐layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat‐type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic–perfectly plastic. Condition of slip at the interfaces are determined by a Mohr–Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14 :87–104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub‐vertical slopes. Copyright © 2001 John Wiley & Sons, Ltd.
Keywords:foliated rock  large deformation  buckling  equivalent continuum
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号