Abstract: | To avoid unseating of a deck, an adequate seat width must be provided. The seat width is basically determined from maximum relative displacement between two bridge segments. Under a strong ground excitation, pounding between two decks may occur at a joint. The pounding will affect the response of two bridge segments. This research is conducted to investigate the effect of pounding on the relative displacement between two adjacent bridge segments. A simplified analytical model of two linear single‐degree‐of‐freedom systems is employed. To take into account the pounding, the laws of conservation of momentum and energy are applied. The analytical results are represented in the form of relative displacement response spectra with pounding effect. It is found that due to the pounding the relative displacement can be amplified, resulting in the requirement of a longer seat width to support a deck. The formulation of normalized relative displacement response spectra is presented together with an application example. It is found that the seat width determined from the relative displacement response spectra with pounding effect becomes close to the value specified in the Japanese design specifications for structures with large difference of natural periods. Copyright © 2001 John Wiley & Sons, Ltd. |