首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical study of Ashiyahama residential building damage in the Kobe Earthquake
Authors:Hideo Takabatake  Taijiro Nonaka
Abstract:Studies are made on the structural damage at the Ashiyahama residential high‐rise steel building complex due to the Hyogo‐ken Nanbu Earthquake (Kobe Earthquake), which occurred on 17 January 1995. The axial breakage of very thick‐plated steel columns of the mega‐structure is unprecedented and has been attracting the special attention of structural engineers. The cause of the damage is first investigated from numerical computation with recourse to an explicit method of dynamic analysis based on a continuous medium. The numerical result is compared with that obtained from a conventional multi‐mass lumped stiffness model combined with an equivalent lateral‐force procedure. By comparing both the numerical results, the latter conventional method is shown to be inadequate for achieving earthquake‐resistant capability. The destructive power of the ground motion is found to have exceeded the horizontal earthquake‐resistant capacity that is prescribed in the structural design criteria. Great axial stresses are produced in columns by combined action of bending moment and axial force due to overturning moment. The fracture of heavy steel columns is caused from only the horizontal component of seismic ground motion. Actual locations of significant damage are closely related to the occurrence of plastic hinges in the analysis. It is emphasized as a warning to avoid yielding concentration in particular storeys. Lastly, recommendations to enhance earthquake‐resistant design are proposed from a practical point of view. Copyright © 2001 John Wiley & Sons, Ltd.
Keywords:earthquake‐resistant design  mega‐structure  dynamic analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号