首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The role of hematite–ilmenite solid solution in the production of magnetic anomalies in ground- and satellite-based data
Authors:Gunther Kletetschka  Peter J Wasilewski  Patrick T Taylor
Abstract:Remanent magnetization (RM) of rocks with hematite–ilmenite solid solution (HISS) minerals, at all crustal levels, may be an important contribution to magnetic anomalies measured by ground and satellite altitude surveys. The possibility that lower thermal gradient relatively deep in the crust can result in exsolution of HISS compositions with strong remanent magnetizations (RM) was studied for two bulk compositions within the HISS system. Samples from granulite-terrane around Wilson Lake, Labrador, Canada contains titanohematite with exsolved ferrian ilmenite lamellae. Other samples from the anorthosite-terrane of Allard Lake, Quebec, Canada contain ferrian ilmenite with exsolved titanohematite lamellae. In both cases, the final exsolved titanohematite has similar Ti content and carries dominant magnetic remanence with REM (=NRM/SIRM, where NRM is the natural remanent magnetization and SIRM is the saturation isothermal remanent magnetization) that is comparable to the Ti-free end member. The RM was acquired prior to exsolution and the ilmeno-hematite-rich rock possesses thermal remanent magnetization (TRM), whereas rocks with hemo-ilmenite possess chemical remanent magnetization (CRM). In both cases, we found fairly large homogeneous grains with low demagnetizing energy that acquired intense RM. The magnetism of the ilmeno-hematite solid solution phases is not significantly perturbed by the continuous reaction: ilmeno-hematitetitanohematite solid solution. Hence, the occurrence of HISS in rocks that cooled slowly in a low intensity magnetic field will have an intense magnetic signature characterized by a large REM.
Keywords:Magnetic petrology  Hematite  Ilmenite  REM  TRM  CRM  Magnetic anomalies
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号