首页 | 本学科首页   官方微博 | 高级检索  
     


Sea-to-air flux of contaminants via bubbles bursting. An experimental approach for tributyltin
Authors:Richard Saint-Louis  Emilien Pelletier  
Affiliation:a Faculté des Sciences, Département de Chimie et Biochimie, Université de Moncton, Moncton, Nouveau Brunswick, Canada;b Institut des Sciences de la Mer de Rimouski (ISMER), Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
Abstract:Although seawater concentration of tributyltin (TBT) should decrease when the direct inputs from ship hulls will cease after the incoming world ban of organotin-based antifouling paints in 2003 or later, the TBT environmental issue will still be present for decades as contaminated sediments in shallow waters will be acting as a long-lasting reservoir for TBT and its degradation products. The lost of TBT to the atmosphere by volatilization has already been proposed as a part of its molecular motion through the aquatic environment but most recent calculated values of water-to-air rate of exchange of TBT (from 20 to 510 nmol m−2 year−1) do not take into account the potential contribution of aerosols ejection to the atmosphere upon bubbles bursting, an important process for pollutants transport in the marine environment. In this work, an experimental approach to measure the seawater-to-air flux of TBT mediated by bubbles bursting is described, and the influence of phytoplankton cells and dissolved organic matter from exudates and culture weathering on flux rates was assessed. The results demonstrate that TBT can be transferred from water to air via the ejection of droplets from bubbles bursting and that cell density strongly affected the transfer. Under a bubbling regime, the water-to-air flux (pmol TBT cm−2 min−1 level) is estimated up to 1000-fold the flux measured for the molecular diffusion and volatilization under static quiescent conditions. The surface microlayer acted as a transient boundary between the water column and the atmosphere where the dynamic of TBT accumulation has the same trend as the dynamic of TBT ejection. This physical transfer mechanism might be of high significance in nearshore environments, harbors, and shallow channels where clouds of bubbles generated in the wake of large ships play an important role for the atmosphere/seawater chemical exchanges.
Keywords:Tributyltin   TBT   Sea-to-air flux   Bubbles bursting   Jet drops   Phytoplankton cells
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号