首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of a sliding-rocking block considering impact with an adjacent wall
Authors:Yu Bao  Dimitrios Konstantinidis
Institution:1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China;2. Department of Civil and Environmental Engineering, University of California, Berkeley, USA
Abstract:A freestanding rigid block subjected to base excitation can exhibit complicated motion described by five response modes: rest, pure rocking, pure sliding, combined sliding-rocking, and free flight. Previous studies on the dynamics of a rocking block have assumed that the block does not interact with neighboring objects. However, there are many applications in which the block may start or come in contact with an adjacent boundary during its motion, for example, a bookcase or cabinet colliding with a partition wall in an earthquake. This paper investigates the dynamics of a sliding-rocking block considering impact with an adjacent wall. A model is developed in which the base and wall are assumed rigid, and impact is treated using the classical impulse and momentum principle. The model is verified by comparing its predictions in numerical simulations against those of an existing general-purpose rigid-body model in which impact is treated using a viscoelastic impact model. The developed model is used to investigate the effects of different parameters on the stability of a block subjected to analytical pulse excitations. It is found that wall placement (left or right) has a dominant effect on the shape of the overturning acceleration spectra for pulse excitations. In general, decreasing the gap distance, base friction coefficient, and wall coefficient of restitution enhance the stability of the block. Similar observations are made when evaluating the overturning probability of a block using earthquake floor motions.
Keywords:rocking  sliding  impact  unilateral contact  overturning
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号