首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of modal characteristics of a mid-rise cold-formed steel building during construction and earthquake testing
Authors:Xiang Wang  Tara C Hutchinson
Institution:Department of Structural Engineering, University of California, San Diego, La Jolla, California, USA
Abstract:Vibration-based structural identification is an essential technique for assessing structural conditions by inferring information from the dynamic characteristics of structures. However, the robustness of such techniques in monitoring the progressive damage of real structures has been validated with only a handful of research efforts, largely due to the paucity of monitoring data recorded from damaged structures. In a recent experimental program, a mid-rise cold-formed steel building was constructed at full scale atop a large shake table and subsequently subjected to a unique multi-hazard scenario including earthquake, post-earthquake fire, and finally post-fire earthquake loading. Complementing the simulated hazard events, low-amplitude vibration tests, including ambient vibrations and white noise base excitation tests, were conducted throughout the construction and the test phases. Using the vibration data collected during the multi-hazard test program, this paper focuses on understanding the modal characteristics of the cold-formed steel building in correlation with the construction and the structural damage progressively induced by the simulated hazard events. The modal parameters of the building (i.e., natural frequencies, damping ratios, and mode shapes) are estimated using two input–output and two output-only time-domain system identification techniques. Agreement between the evolution of modal parameters and the observations of the progression of physical damage demonstrates the effectiveness of the vibration-based system identification techniques for structural condition monitoring and damage assessment.
Keywords:cold-formed steel  damage assessment  modal parameters  shake table tests  system identification
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号