首页 | 本学科首页   官方微博 | 高级检索  
     

模糊ISODATA聚类算法在声速剖面自动分类中的应用
引用本文:贾延峰,笪良龙,谢骏. 模糊ISODATA聚类算法在声速剖面自动分类中的应用[J]. 海洋科学, 2009, 33(12): 103-105
作者姓名:贾延峰  笪良龙  谢骏
作者单位:国防大学,北京,100091;海军潜艇学院,山东,青岛,266071
基金项目:国防预研基金,新世纪优秀人才支持计划项目NCET 
摘    要:依据中国海浅海区30′按月历史统计声速剖面数据,通过归一化处理和Akima差值采样得到梯度剖面,建立起各方区按月归化后的声速剖面分层梯度样本集,并采用模糊ISODATA聚类算法对声速剖面进行聚类分析.通过对分类结果和类内总方差和的分析表明,聚类参数m值在1.1~2.1之间,并以最远邻系统聚类法结果为初始类中心的模糊分类效果较好.应用该方法对海洋中的声速剖面进行自动分类和区划对海洋环境的战术应用意义重大.

关 键 词:声速剖面  声速剖面类型  声速分布  模糊聚类  聚类分析
收稿时间:2008-06-18
修稿时间:2009-09-14

Clustering of sound speed profile based on fuzzy ISODATA algorithm
JIA Yan-feng,DA Liang-long and XIE Jun. Clustering of sound speed profile based on fuzzy ISODATA algorithm[J]. Marine Sciences, 2009, 33(12): 103-105
Authors:JIA Yan-feng  DA Liang-long  XIE Jun
Abstract:A sound speed gradient profile sample database is built through a normalization process and Akima sampling of sound speed profiles which are derived from 30′×30′ latitude-longitude historical statistic data for every month. Fuzzy ISODATA cluster analysis arithmetic is performed to classify the sound speed profiles based on the sample database, and then to calculate sum of variance within the group based on the cluster results. Through analyzing the clustering result and sum of variance within the group, it was shown that the value of clustering parameter m is better between 1.1~2.1, and the fuzzy cluster result which takes the farthest neighbour hierarchical cluster result as an initialization cluster center is better. Automatic classifications and provinces of the sound speed profiles are very helpful to the tactical application of marine environments.
Keywords:sound speed profile  sound speed profile type  sound distribution  fuzzy clustering  clustering analysis
本文献已被 万方数据 等数据库收录!
点击此处可从《海洋科学》浏览原始摘要信息
点击此处可从《海洋科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号