首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A multiresolution model for small-body gravity estimation
Authors:Brandon A Jones  Gregory Beylkin  George H Born  Robert S Provence
Institution:1.Colorado Center for Astrodynamics Research,University of Colorado,Boulder,USA;2.Department of Applied Mathematics,University of Colorado,Boulder,USA;3.Aerosciences and Flight Mechanics Division,NASA Johnson Space Center,Houston,USA
Abstract:A new model, dubbed the MRQSphere, provides a multiresolution representation of the gravity field designed for its estimation. The multiresolution representation uses an approximation via Gaussians of the solution of the Laplace’s equation in the exterior of a sphere. Also, instead of the spherical harmonics, variations in the angular variables are modeled by a set of functions constructed using quadratures for the sphere invariant under the icosahedral group. When combined, these tools specify the spatial resolution of the gravity field as a function of altitude and required accuracy. We define this model, and apply it to representing and estimating the gravity field of the asteroid 433 Eros. We verified that a MRQSphere model derived directly from the true spherical harmonics gravity model satisfies the user defined precision. We also use the MRQSphere model to estimate the gravity field of Eros for a simulated satellite mission, yielding a solution with accuracy only limited by measurement errors and their spatial distribution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号