首页 | 本学科首页   官方微博 | 高级检索  
     


EARTHQUAKE-CAUSED SEISMIC VOLCANIC ROCKS AND THIXOTROPIC DEFORMATION OF SOFT SEDIMENTS IN THE UPPER CRETACEOUS SHIJIATUN MEMBER,JIAOZHOU CITY
Authors:TIAN Hong-shui  WANG Hua-lin  ZHU Jie-wang  ZHANG Shen-he
Affiliation:1.School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China;2.Earthquake Engineering Research Center of Shandong Province, Jinan 250014, China
Abstract:A lot of seismic volcanic rocks and strong earthquake-induced thixotropic deformation structures in soft mud-sandy sediments(seismites)were identified from the Upper Cretaceous Shijiatun Member of the Hongtuya Formation for the first time in Jiaozhou City of the Zhucheng Sag, eastern China. Seismic volcanic rocks are volcanic rocks with co-seismic deformation structures which were produced by major earthquakes destroying volcano ejecta. Seismites are sediment layers with soft-sediment deformation structures formed by strong earthquake triggering saturated or semi-consolidated soft sediments to produce liquefaction, thixotropy, faults, cracks and filling and so forth. The Shijiatun Member of the Hongtuya Formation mainly consists of basaltic volcano rocks interbedded with mud-sandy(muddy sand and sandy mud)deposition layers of the river-lake facies. In the Shijiatun Member, main types of seismic volcanic rocks are shattered basalts with co-seismic fissures and seismic basaltic breccias. The thixotropic deformations of soft mud-sandy sediments mainly include thixotropic mud-sandy veins and thixotropic mud-sandy layers with tortuous boundaries. Under the strong earthquake action, saturated mud-sandy sediments could not be liquefied, instead resulting in thixotropy, i.e. their texture can be damaged and their flow-ability or rheology becomes strong. Because basaltic volcano rocks were damaged(shattered, seismic broken), a major earthquake can lead to thixotropic mud-sandy sediments flowing along seismic fissures in basalts, resulting in the formation of deformation structure of thixotropic veins, and boundaries between volcano rock and mud-sand layer became quite winding. Under the koinonia of gravity and vibration force, seismic breccia blocks sunk into thixotropic mud-sandy layers, resulting in the formation of inclusions of thixotropic mud-sandy sediments. Seismic intensity reflected by these strong earthquake records during the end stage of the Late Cretaceous was about Ⅶ to more than X degrees. The Shijiatun Member is mainly distributed in the south of the Baichihe fault in the northern Zhucheng Sag, and the fault has generated many strong tectonic and earthquake activities at the end of the late Cretaceous, also provided the channel for intrusion and eruption of basaltic magma then. At the end of the late Cretaceous, intermittent intrusion and eruption of basaltic magma took place along the Baichihe fault, meanwhile the volcano earthquakes took place or tectonic earthquakes were generated by the Baichihe fault which caused the deformation of the volcano lava and underlying strata of red saturated muddy-sand, resulting in the formation of various seismo-genesis deformations of volcanic rocks interbedded with mud-sandy sediment layers. Therefore, strong seismic events recorded by them should be responses to strong tectonic taphrogenesis of the Zhucheng Sag and intense activity of the Baichihe fault in the end of Late Cretaceous. In addition, these seismogenic deformation structures of rock-soil layers provide new data for the analysis of the failure effect produced by seismic force in similar rock-soil foundations.
Keywords:seismic volcanic rock  soft mud-sandy sediment  thixotropic deformation  seismic event record  Jiaozhou City  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号