The preparation and characterization of vanadium-substituted goethite: The importance of temperature |
| |
Authors: | Navdeep Kaur Brendan J. Kennedy |
| |
Affiliation: | a Faculty of Agriculture, Food & Natural Resources, The University of Sydney, NSW 2006, Australia b School of Chemistry, The University of Sydney, NSW 2006, Australia |
| |
Abstract: | Despite a close geo-chemical association between vanadium (V) and iron (Fe) in natural environments, there is little research on the substitution of V in goethite. To assess the effect of temperature on V-substitution in goethite, a series of V-substituted goethite were prepared under varying synthesis temperatures, and analysed using wet chemical and multi-spectroscopic techniques. Vanadium substitution was inversely related to synthesis temperatures and was hindered by the oxidation of V3+ to V4+/5+ as indicated by X-ray absorption near-edge spectroscopy. The presence of V (V5+ > V4+ > V3+) at high temperature hindered the nucleation of goethite and crystal growth along particular faces resulting in large-sized and twinned crystals as shown by transmission electron microscopy. The large-sized goethite crystals released more Fe (mmoles) per unit surface area during proton-promoted dissolution than the smaller-sized crystals, which could be due to distorted V4+/5+ local coordination environments in the mineral structure. The dissolution studies showed a heterogeneous distribution of V and/or crystal defects in goethite crystals. The results show that low synthesis temperatures preserved the oxidation state of V3+, which has ionic radius and hydrolytic properties similar to Fe3+, and hence resulted in as much as 13.3 mol per cent substitution. The structural stability of the goethite decreased upon V-substitution in order; V3+ > V4+ > V5+. This research provides important information about the interaction between temperature, V incorporation, and crystal structure properties of goethite for V sequestration and other potentially toxic metal cations. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|