首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Liquid composition-dependence of calcium isotope fractionation during diffusion in molten silicates
Authors:James M Watkins  Donald J DePaolo  Christian Huber
Institution:a Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720-4767, USA
b Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-4767, USA
c Lawrence Livermore National Laboratory, L-638, LLNL, Livermore, CA 94550, USA
Abstract:Liquid phase diffusion experiments were carried out to determine whether diffusive isotopic fractionation of a major chemical element (Ca) varies with chemical composition in high-temperature molten silicates. The objective was to determine how differences in silicate liquid structure, such as the ratio of bridging to non-bridging oxygen atoms, as well as bulk transport properties such as viscosity, relate to isotope discrimination during diffusion. This information, in turn, may relate to the lifetimes and sizes of multi-atom structures in the liquid. Diffusion couples consisting of juxtaposed natural mafic and felsic liquids were held at T = 1450 °C and P = 1.0 GPa for durations of 12-24 h in a standard piston-cylinder assembly. Experiments were done using different mafic endmember compositions (two tholeiitic basalts and a ugandite) and a single rhyolite composition. Major-element diffusion profiles and Ca isotope profiles were measured on the recovered quenched glasses. The starting materials were isotopically indistinguishable, but 44Ca/40Ca variations of ca. 5‰ arose due to a mass dependence of the Ca diffusion coefficients. Results indicate that the mass dependence of Ca diffusion coefficients varies with the magnitude and direction of aluminum gradients and the viscosity of the liquid. Some Ca fractionations result mainly from Al gradients.A simplified multicomponent diffusion model was used to model the experimental results. The model allows for diffusion of Ca in response to gradients in the concentrations of both CaO as well as Al2O3, and the model results are consistent with the inferred existence of at least two distinct species of Ca. The magnitude of isotopic discrimination during diffusion also appears to be stronger on the rhyolite versus the basalt/ugandite side of diffusion couples. The results can largely be accounted for by an adaptation of the model of Dingwell (1990), whereby in high silica liquids, Ca diffuses largely by site hopping through a quasi-stationary aluminosilicate matrix, producing strong isotopic effects because the Ca diffusion is not strongly correlated with the movement of the framework atoms. In low-silica liquids, Ca diffusion is correlated with the movement of the other components and there is less mass discrimination. Combining our Ca results with Ca, Mg, and Li data from previous studies, we show that this model can explain most of the cation- and composition-dependence of diffusive isotopic fractionations observed thus far. A key parameter controlling isotopic discrimination is the ratio of the elemental (Ca, Mg, Li) diffusivity to the Eyring (or Si) diffusivity. However, all experiments done so far also exhibit isotopic features that are not yet fully explained; some of these may relate to small temperature gradients in the capsules, or to more complex coupling effects that are not captured in simplified diffusion models.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号