首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The stability and major element partitioning of ilmenite and armalcolite during lunar cumulate mantle overturn
Authors:Carla Thacker  Qinglan Peng  Paul Hess
Institution:Department of Geological Sciences, Brown University, Providence, RI 02912, USA
Abstract:Ilmenite has played an important role in the petrogenesis of lunar high-Ti picritic magmas, and armalcolite is another high-Ti oxide that was first discovered on the moon. In this study, we examined the thermodynamic stability of ilmenite and armalcolite in the context of lunar cumulate mantle overturn. Two starting compositions were explored, an ilmenite-bearing dunite (olivine + ilmenite) and an ilmenite-bearing harzburgite (olivine + orthopyroxene + ilmenite). Experiments were conducted using a 19.05 mm piston-cylinder apparatus at temperatures of 1235-1475 °C and pressures of 1-2 GPa. In runs with the ilmenite-bearing dunite mixture, ilmenite is stable in the subsolidus assemblage at least up to 1450 °C and 2 GPa. In runs with the ilmenite-bearing harzburgite starting mixture, ilmenite is stable at pressures greater than 1.4 GPa, and armalcolite is stable at lower pressures. Solidi for both starting compositions were determined, and the phase boundary between ilmenite- and armalcolite-bearing harzburgite was shown to have little dependence on temperature. During lunar cumulate overturn, sinking ilmenite formed near the end of lunar magma ocean solidification transforms into armalcolite when in contact with harzburgite cumulates at depths of less than 280 km in the lunar mantle. Inefficient overturn could leave isolated, inhomogeneously distributed pockets of armalcolite-bearing harzburgite in the upper lunar mantle, underlain by an ilmenite-bearing lower lunar mantle. These high-Ti oxide-bearing harzburgitic pockets can serve as potential sources for the generation of high-Ti magmas through partial melting or through assimilation of high-Ti minerals during transport of low-Ti picritic magmas in the lunar mantle.FeO-MgO exchange between olivine and either ilmenite or armalcolite was also examined in this study. We found the FeO-MgO distribution coefficient to be effectively independent of temperature for the pressures, temperatures, and compositions explored, with an average value of 0.179 ± 0.008 for olivine/ilmenite and 0.319 ± 0.021 for olivine/armalcolite. Given the bulk composition of an overturned lunar cumulate mantle, our measured FeO-MgO distribution coefficients can be used to estimate the Mg# of coexisting minerals in armalcolite- or ilmenite-bearing harzburgite and dunite in the overturned lunar mantle. Finally, the transformation from ilmenite-bearing harzburgite to armalcolite-bearing harzburgite results in a density increase of up to 2%. Large armalcolite-bearing cumulate bodies in the upper lunar mantle may be detectable in future lunar geophysical experiments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号