A chemical and thermodynamic model of oil generation in hydrocarbon source rocks |
| |
Authors: | Harold C. Helgeson Laurent Richard William F. McKenzie Alexandra Schmitt |
| |
Affiliation: | a University of California, Department of Earth and Planetary Science, Berkeley, CA 94720, USA b Nancy-Université, Département des Sciences de la Terre, 54506 Vandoeuvre-lès-Nancy, France c 981 Euclid Avenue, Berkeley, CA 94708, USA d School of Thought, Stanley, ID 83278, USA |
| |
Abstract: | Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ?25 but ?100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ∼1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO2 gas, and a more mature (oxidized) kerogen with a lower H/C which in turn melts incongruently with further burial to produce more crude oil, CO2 gas, and a kerogen with a lower H/C and so forth.The petroleum generated in the process progresses from heavy naphthenic crude oils at low temperatures to mature petroleum at ∼150 °C. For example, the results of Computer Experiment 27 (see below) indicate that the overall incongruent melting reaction in the water-absent region of the system C-H-O at 150 °C and a depth of ∼4.3 km of an immature type-II/III kerogen with a bulk composition represented by C292H288O12(c) to produce a mature (oxidized) kerogen represented by C128H68O7(c), together with a typical crude oil with an average metastable equilibrium composition corresponding to C8.8H16.9 (C8.8H16.9(l)) and CO2 gas (CO2(g)) can be described by writing |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|