首页 | 本学科首页   官方微博 | 高级检索  
     检索      


VLBI terrestrial reference frame contributions to ITRF2008
Authors:Sarah Böckmann  T Artz  A Nothnagel
Institution:1. Institute of Geodesy and Geoinformation, Nussallee 17, 53115, Bonn, Germany
Abstract:In late 2008, the Product Center for the International Terrestrial Reference Frame (ITRF) of the International Earth Rotation and Reference Systems Service (IERS) issued a call for contributions to the next realization of the International Terrestrial Reference System, ITRF2008. The official contribution of the International VLBI Service for Geodesy and Astrometry (IVS) to ITRF2008 consists of session-wise datum-free normal equations of altogether 4,539 daily Very Long Baseline Interferometry (VLBI) sessions from 1979.7 to 2009.0 including data of 115 different VLBI sites. It is the result of a combination of individual series of session-wise datum-free normal equations provided by seven analysis centers (ACs) of the IVS. All series are completely reprocessed following homogeneous analysis options according to the IERS Conventions 2003 and IVS Analysis Conventions. Altogether, nine IVS ACs analyzed the full history of VLBI observations with four different software packages. Unfortunately, the contributions of two ACs, Institute of Applied Astronomy (IAA) and Geoscience Australia (AUS), had to be excluded from the combination process. This was mostly done because the IAA series exhibits a clear scale offset while the solution computed from normal equations contained in the AUS SINEX files yielded unreliable results. Based on the experience gathered since the combination efforts for ITRF2005, some discrepancies between the individual series were discovered and overcome. Thus, the consistency of the individual VLBI solutions has improved considerably. The agreement in terms of WRMS of the Terrestrial Reference Frame (TRF) horizontal components is 1 mm, of the height component 2 mm. Comparisons between ITRF2005 and the combined TRF solution for ITRF2008 yielded systematic height differences of up to 5 mm with a zonal signature. These differences can be related to a pole tide correction referenced to a zero mean pole used by four of five IVS ACs in the ITRF2005 contribution instead of a linear mean pole path as recommended in the IERS Conventions. Furthermore, these systematics are the reason for an offset in the scale of 0.4 ppb between the IVS’ contribution to ITRF2008 and ITRF2005. The Earth orientation parameters of seven series used as input for the IVS combined series are consistent to a huge amount with about 50 μas WRMS in polar motion and 3 μs in dUT1.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号