首页 | 本学科首页   官方微博 | 高级检索  
     


Magnetic Field as a Tracer for Studying the Differential Rotation of the Solar Corona
Authors:O. G. Badalyan  V. N. Obridko
Affiliation:1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation,RAS,Troitsk, Moscow,Russia
Abstract:The characteristics of differential rotation of the solar corona for the period 1976?–?2004 were studied as a function of the distance from the center of the Sun. For this study, we developed a method using the coronal magnetic field as a tracer. The field in a spherical layer from the base of the corona up to the source surface was determined from photospheric measurements. Calculations were performed for 14 heliocentric distances from the base of the corona up to 2.45 (R_{odot }) solar radii (the vicinity of the source surface) and from the equator to (pm 75^{circ }) of latitude at (5^{circ }) steps. For each day, we calculated three spherical components, which were then used to obtain the field strength. The coronal rotation periods were determined by the periodogram method. The rotation periods were calculated for all distances and latitudes under consideration. The results of these calculations make it possible to study the distribution of the rotation periods in the corona depending on distance, time, and phase of the cycle. The variations in the coronal differential rotation during the time interval 1976?–?2004 were as follows: the gradient of differential rotation decreased with the increase of heliocentric distance; the rotation remaining differential even in the vicinity of the source surface. The highest rotation rates (shortest rotation periods) were recorded at the cycle minimum at small heliospheric distances, i.e. small heights in the corona. The lowest rotation rate was observed at the middle of the ascending branch at large distances. At the minimum of the cycle, the differential rotation is most clearly pronounced, especially at small heliocentric distances. As the distance increases, the differential rotation gradient decreases in all phases. The results based on magnetic data and on the brightness of the coronal green line 530.3 nm Fe xiv used earlier show a satisfactory agreement. Since the rotation of the magnetic field at the corresponding heights in the corona is probably determined by the conditions in the field generation region, an opportunity arises to use this method for diagnostics of differential rotation in the subphotospheric layers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号