首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A method predicting the earthquake-induced landslide risk by back analyses of past landslides and its application in the region of the Wenchuan 12/5/2008 earthquake
Authors:Baofeng Di  Constantine A Stamatopoulos  Miranda Dandoulaki  Eleni Stavrogiannopoulou  Meng Zhang  Persefoni Bampina
Institution:1.College of Architecture and Environment,Sichuan University,Chengdu,People’s Republic of China;2.Stamatopoulos and Associates Co. and Hellenic Open Univerity,Athens,Greece;3.National School of Public Administration and Local Government,Athens,Greece
Abstract:The work considers critical slopes located at regions with high danger and proposes a method which approximately predicts the risk of earthquake-induced excessive movement of these slopes, in the case where relevant soil strength data along their slip surface do not exist. The method utilizes (1) simplified constitutive equations predicting soil response along slip surfaces and (2) a multi-block sliding system model, both recently proposed. It involves the following steps: (a) collect relevant topographic information and laboratory test results of past landslides at the region of interest, (b) (i) analyze the relevant laboratory tests to estimate the soil constitutive parameters and (ii) estimate the mobilized residual soil strength by back analysis of relevant past landslides, (c) select constitutive model parameters for future applications at the region based on step (b) and validate them based on analysis of the triggering of the past landslides and (d) apply the selected constitutive model parameters in critical slopes in the region under consideration to predict not only whether triggering occurs, but also the post-triggering slide deformation. The paper, after describing in detail the proposed method, applies it at the Wenchuan region, where the 12th May 2008 earthquake triggered many landslides. During the application, four ring shear test results and twelve landslides of the 12th May 2008 earthquake were considered. The application was successful and the following were observed: (i) in the back analyses, the multi-block model predicted reasonably well the final configuration of all slides, (ii) apart from two significantly larger back-estimated values of the residual soil strength, small scatter existed in the other back-estimated values and (iii) the selected model parameters were duly validated under step (c). Furthermore, as the back-estimated friction angle of most landslides was less than 18°, and the materials along the slip surface have a Liquid Limit value less than 25 %, it is inferred that some, or all of the slip surface during these slides, was sheared in an undrained manner.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号