首页 | 本学科首页   官方微博 | 高级检索  
     

改进的遗传算法在堆石体参数反演中的应用
引用本文:张社荣,何辉. 改进的遗传算法在堆石体参数反演中的应用[J]. 岩土力学, 2005, 26(2): 182-186
作者姓名:张社荣  何辉
作者单位:天津大学 建筑工程学院,天津 30072
摘    要:在研究堆石坝问题中,堆石体参数的合理估计非常重要,根据工程实测值反演堆石体参数不失为一种有效估计参数的新思路。在传统遗传算法操作过程中,引入模拟退火的Metropolis接受准则,并结合系统识别的基本原理改进了遗传算法。将改进的新算法应用于堆石坝主要堆石料的参数反演,结果显示其误差很小、收敛速度快、精度高的优越性,克服了传统的梯度优化方法和单纯形法所具有的搜索速度随反演参数增多呈级数减慢、容易陷入局部极值点和误差传递导致不收敛等缺点,值得在本领域参数优化中推广。

关 键 词:遗传算法  模拟退火  参数反演  系统识别  面板堆石坝  
文章编号:1000-7598-(2005)02-0182-05
收稿时间:2003-09-18
修稿时间:2003-09-18

Application of improved genetic algorithm to back analyzing parameters of rockfill
ZHANG She-rong,HE Hui. Application of improved genetic algorithm to back analyzing parameters of rockfill[J]. Rock and Soil Mechanics, 2005, 26(2): 182-186
Authors:ZHANG She-rong  HE Hui
Affiliation:School of Civil Engineering, Tianjin University, Tianjin 300072, China
Abstract:It is very important to reasonably estimate parameters of rockfill in study and analysis of rockfill dams. Back analysis of parameters of rockfill according to in-situ measurement is one kind of new method to effectively estimate the parameters. Metropolis accepting rule of simulated annealing algorithm and system identification are applied to improve genetic algorithm during the processing. Applying this improved genetic algorithm to back analyzing parameters of rockfill, the result shows that the algorithm has advantages of higher accuracy, quick convergence etc.. This method is deserved to be popularized for parameters optimization in this filed.
Keywords:genetic algorithm  simulated annealing  parameter back analysis  system identification  concrete faced rockfill dams (CFRD)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号