Holocene climate change and carbon cycling in a groundwater-fed, boreal forest lake: Dune Lake, Alaska |
| |
Authors: | Bruce P. Finney Nancy H. Bigelow Valerie A. Barber Mary E. Edwards |
| |
Affiliation: | (1) Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen’s University, Kingston, ON, K7L 3N6, Canada |
| |
Abstract: | We compared cladoceran assemblages in modern and pre-industrial sediments from cores taken in 48 softwater lakes located in four main regions of Nova Scotia (Canada) to evaluate the impacts of acidification and other recent environmental stressors. Lakes in Kejimkujik National Park showed significant increases in Holopedium relative abundances and significant decreases in Alona and other chydorids since pre-industrial times, which appear to be related to declines in pH and calcium (Ca) concentrations caused by acidic deposition. Lakes in Bridgewater also showed a significant decrease in Alona, as well as a significant increase in macrothricid (Acantholeberis and Ophryoxus) taxa that cannot be explained by declines in pH, although declines in [Ca] have been recorded. Lakes in Yarmouth did not show any significant regional changes in major cladoceran species groups. Still, pre-industrial assemblages in these lakes significantly differed from modern assemblages, with assemblage changes being lake-specific and likely related to interactions between local and regional stressors acting on individual lakes. Finally, lakes in Cape Breton Highlands National Park, located on the taiga plateau, have received historically lower levels of sulphate deposition relative to other regions in the province, and recorded a significant decrease in Alona similar to Bridgewater lakes. The province-wide decrease in Alona across different acid deposition rates suggests that limnological changes related to climate warming may be responsible. Overall, this study shows that acidification history is an important predictor of cladoceran assemblage changes since pre-industrial times in Nova Scotia lakes, although multiple stressors result in complex Cladocera responses in some regions. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|