首页 | 本学科首页   官方微博 | 高级检索  
     检索      


MHD simulations of rayleigh-taylor instability in young supernova remnants
Authors:Byung-Il Jun  Michael L Norman
Institution:(1) Laboratory for Computational Astrophysics National Center for Supercomputing Applications Department of Astronomy, University of Illinois, Urbana-Champaign, USA
Abstract:Radio observations shows that young supernova remnants such as Tycho and Cas A generally exhibit a circular clumpy shell. This shell shows a radial magnetic field whose equipartition strength is 2 to 3 orders of magnitude higher than the interstellar field. A simple compression of the ambient field by the shock can explain neither of these observations. We show that the Rayleigh-Taylor instability which occurs at the ejecta/ISM interface can explain these observations. We have done MHD simulations of the instability in the shell of Type-I supernova remnants for the first time by utilizing moving grid technique. Our simulation shows that Rayleigh-Taylor and Kelvin-Helmholtz instabilities amplify ambient magnetic fields locally and produce the clumpy radio shell. Strong magnetic field lines draped around the Rayleigh-Taylor fingers produce the radial B-vector polarization, whereas thermal bremsstrahlung from the dense fingers themselves produce the clumpy X-ray emission.
Keywords:Supernova Remnants  Instability  MHD Simulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号