首页 | 本学科首页   官方微博 | 高级检索  
     

机载激光雷达及高光谱的森林乔木物种多样性遥感监测
引用本文:董文雪,曾源,赵玉金,赵旦,郑朝菊,衣海燕. 机载激光雷达及高光谱的森林乔木物种多样性遥感监测[J]. 遥感学报, 2018, 22(5): 833-847
作者姓名:董文雪  曾源  赵玉金  赵旦  郑朝菊  衣海燕
作者单位:中国科学院遥感与数字地球研究所数字地球重点研究室;中国科学院大学资源与环境学院;中国科学院植物研究所植被与环境变化国家重点实验室
基金项目:国家重点研发计划(编号:2016YFC0500201);国家自然科学基金(编号:41671365)
摘    要:利用机载LiDAR和高光谱数据并结合37个地面调查样本数据,基于结构差异与光谱变异理论,通过相关分析法分别筛选了3个最优林冠结构参数和6个最优光谱指数,在单木尺度上利用自适应C均值模糊聚类算法,在神农架国家自然保护区开展森林乔木物种多样性监测,实现了森林乔木物种多样性的区域成图。研究结果表明,(1)基于结合形态学冠层控制的分水岭算法可以获得较高精度的单木分割结果(R~2=0.88,RMSE=13.17,P0.001);(2)基于LiDAR数据提取的9个结构参数中,95%百分位高度、冠层盖度和植被穿透率为最优结构参数,与Shannon-Wiener指数的相关性达到R~2=0.39—0.42(P0.01);(3)基于机载高光谱数据筛选的16个常用的植被指数中,CRI、OSAVI、Narrow band NDVI、SR、Vogelmann index1、PRI与Shannon-Wiener指数的相关性最高(R~2=0.37—0.45,P0.01);(4)在研究区,利用以30 m×30 m为窗口的自适应模糊C均值聚类算法可预测的最大森林乔木物种数为20,物种丰富度的预测精度为R~2=0.69,RMSE=3.11,Shannon-Wiener指数的预测精度为R~2=0.70,RMSE=0.32。该研究在亚热带森林开展乔木物种多样性监测,是在区域尺度上进行物种多样性成图的重要实践,可有效补充森林生物多样性本底数据的调查手段,有助于实现生物多样性的长期动态监测及科学分析森林物种多样性的现状和变化趋势。

关 键 词:植物多样性  物种丰富度  激光雷达  高光谱  单木分离  聚类
收稿时间:2017-08-30

Forest species diversity mapping using airborne LiDAR and hyperspectral data
DONG Wenxue,ZENG Yuan,ZHAO Yujin,ZHAO Dan,ZHENG Zhaoju and YI Haiyan. Forest species diversity mapping using airborne LiDAR and hyperspectral data[J]. Journal of Remote Sensing, 2018, 22(5): 833-847
Authors:DONG Wenxue  ZENG Yuan  ZHAO Yujin  ZHAO Dan  ZHENG Zhaoju  YI Haiyan
Affiliation:Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;College of Resources and Environmental, University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China,Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China,Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China and Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;College of Resources and Environmental, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Forest species diversity, as a key component of biodiversity, plays an irreplaceable role in maintaining ecological balance, processes, and services. In recent years, forest tree species diversity is facing a serious threat with intensifying human activities and influence of climate change. The status and trends of forest tree species diversity must be dynamically monitored to develop effective forest biodiversity conservation approaches.In this study, an airborne light detection and ranging (LiDAR) (>4 points/m2) and hyperspectral (PHI-3 sensor with spatial resolution of 1 m) data combined with 37 field sample data are used to detect tree species variation in the structural and spectral properties in the Shennongjia Forest Nature Reserve of China. First, we use the morphological crown control method based on a watershed algorithm to isolate individual tree crowns by using LiDAR. We select optimal structural indices from nine commonly used structural indices derived using LiDAR based on the theory of structural and spectral variation hypothesis. Meanwhile, we select optimal vegetation indices from 16 VIs based on the hyperspectral data by conducting a correlation analysis with the field samples. Second, a self-adaptive fuzzy C-means clustering algorithm is applied to map the species diversity (i.e., richness and Shannon-Wiener index) in the study area for each 30 m×30 m window at the individual tree crown scale.Result indicates that the individual tree isolation by using the watershed algorithm can obtain a high accuracy (R2=0.88, RMSE=13.17, P<0.001). The 95th quintile height, canopy cover, and vegetation permeability are the optimal structural indices, and their correlation with the Shannon-Wiener index are from 0.39 to 0.42 (R2=0.39-0.42, P<0.01). The correlation among RI, OSAVI, narrow band NDVI, SR, Vogelmann index 1, PRI, and field inventory Shannon-Wiener index are relatively high based on the airborne hyperspectral data (R2=0.37-0.45, P<0.01). Finally, we use the selected three structural and six vegetation indices to predict the optimal clustering numbers (species richness) and the Shannon-Wiener index by using the self-adaptive fuzzy C-means clustering algorithm. The result shows that the maximum tree species that can be predicted is 20. The prediction accuracy of species richness is R2=0.69, RMSE=3.11, and the Shannon-Wiener index is R2=0.70, RMSE=0.32.This method shows the potential of LiDAR combined with hyperspectral data in mapping species diversity of a subtropical forest. Moreover, it could provide an effective method for analyzing the current situation and its changing trend of forest biodiversity at a regional scale.
Keywords:forest diversity  species richness  LiDAR  hyperspectral  individual tree crown isolation  clustering
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号