首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flow and transport through two-dimensional isotropic media of binary conductivity distribution. Part 1: NUMERICAL methodology and semi-analytical solutions
Authors:Email author" target="_blank">A?FioriEmail author  I?Jankovic  G?Dagan
Institution:(1) Faculty of Engineering, Università di Roma Tre, Via Volterra 62, 00146 Rome, Italy;(2) Faculty of Engineering, University at Buffalo, Buffalo , NY 14260-4400, USA;(3) Faculty of Engineering, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
Abstract:Flow and transport take place in a heterogeneous medium made up from inclusions of conductivity K submerged in a matrix of conductivity K 0. We consider two-dimensional isotropic media, with circular inclusions of uniform radii, that are placed at random and without overlap in the matrix. The system is completely characterized by the conductivity contrast kappa=K/K 0 and by the volume fraction n. The flow is uniform in the mean, of velocity U=const. The derivation of the velocity field is achieved by a numerical method of high accuracy, based on analytical elements. Approximate analytical solutions are derived by a few methods: composite elements, effective medium, dilute systems and first-order approximation in logconductivity variance. The latter was employed by Rubin (1995), while the dilute system approximation was used by Eames and Bush (1999) and Dagan and Lessoff (2001). Transport is solved in a Lagrangean framework, with trajectories determined numerically from the velocity field, by particle tracking. Results for the velocity variance and for the longitudinal macrodispersivity, for a few values of kappa and n, are presented in Part 2.
Keywords:Solute transport  Heterogeneous media  Composite media  Groundwater hydrology
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号