首页 | 本学科首页   官方微博 | 高级检索  
     

三维成矿预测数据整合过程不确定性研究——以宁芜盆地钟姑矿田为例
引用本文:李晓晖,戴文强,袁峰,张明明,胡训宇,周涛发,李建设,陆三明. 三维成矿预测数据整合过程不确定性研究——以宁芜盆地钟姑矿田为例[J]. 岩石学报, 2018, 34(11): 3235-3243
作者姓名:李晓晖  戴文强  袁峰  张明明  胡训宇  周涛发  李建设  陆三明
作者单位:合肥工业大学资源与环境工程学院, 合肥 230009;安徽省矿产资源与矿山环境工程技术研究中心, 合肥 230009,合肥工业大学资源与环境工程学院, 合肥 230009;安徽省矿产资源与矿山环境工程技术研究中心, 合肥 230009,合肥工业大学资源与环境工程学院, 合肥 230009;安徽省矿产资源与矿山环境工程技术研究中心, 合肥 230009;中国科学院新疆生态与地理研究所, 新疆矿产资源研究中心, 乌鲁木齐 830011,合肥工业大学资源与环境工程学院, 合肥 230009;安徽省矿产资源与矿山环境工程技术研究中心, 合肥 230009,合肥工业大学资源与环境工程学院, 合肥 230009;安徽省矿产资源与矿山环境工程技术研究中心, 合肥 230009,合肥工业大学资源与环境工程学院, 合肥 230009;安徽省矿产资源与矿山环境工程技术研究中心, 合肥 230009,安徽省公益性地质调查管理中心, 合肥 230091,安徽省公益性地质调查管理中心, 合肥 230091
基金项目:本文受国家自然科学基金项目(41820104007、41702353、41672069)、国家重点研发计划项目(2016YFC0600209)、中央高校基本科研业务费专项资金(JZ2018HGTB0249)和中国科学院"西部之光"人才引进计划项目联合资助.
摘    要:基于多元地学大数据的三维成矿预测方法是开展深部找矿预测的新方法和新手段,也是当前成矿预测领域的研究热点之一。然而,大数据具有高维、混杂、非精确等特点,其分析处理过程面临多重不确定性。多元地学大数据整合是三维成矿预测的最终环节,其存在的不确定性将直接作用于预测结果,影响进一步的找矿应用和风险评估。本文以宁芜盆地钟姑矿田为例,从大数据思维出发,定量分析和度量预测要素和数学模型在数据整合过程中存在的不确定性及对三维成矿预测结果的影响。结果显示,断裂构造、背斜轴部等预测要素的不确定性对三维成矿预测结果的影响最为强烈;数据整合模型中,较之Logistic回归模型和证据权重模型,神经网络模型可能具有更高的不确定性程度。进一步工作可通过增强上述预测要素的可靠性和有效性、采用更多的数据整合模型进行更为全面的不确定性分析和评价,以获得更为可靠的三维成矿预测成果,从而降低成矿预测和找矿勘探风险。

关 键 词:不确定性  大数据  数据整合  三维成矿预测
收稿时间:2018-05-30
修稿时间:2018-08-18

Uncertainty analysis of data combination within 3D prospectivity modelling: A case study in Zhonggu orefield, Ningwu basin, China
LI XiaoHui,DAI WenQiang,YUAN Feng,ZHANG MingMing,HU XunYu,ZHOU TaoF,LI JianShe and LU SanMing. Uncertainty analysis of data combination within 3D prospectivity modelling: A case study in Zhonggu orefield, Ningwu basin, China[J]. Acta Petrologica Sinica, 2018, 34(11): 3235-3243
Authors:LI XiaoHui  DAI WenQiang  YUAN Feng  ZHANG MingMing  HU XunYu  ZHOU TaoF  LI JianShe  LU SanMing
Affiliation:School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei University of Technology, Hefei 230009, China,School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei University of Technology, Hefei 230009, China,School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei University of Technology, Hefei 230009, China;Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China,School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei University of Technology, Hefei 230009, China,School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei University of Technology, Hefei 230009, China,School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei University of Technology, Hefei 230009, China,Public Geological Survey Management Center of Anhui Province, Hefei 230091, China and Public Geological Survey Management Center of Anhui Province, Hefei 230091, China
Abstract:Based on the multivariate geological big data, the three-dimensional prospectivity modeling has become one of the new methods and approaches to predict the concealed ore deposit in depth. However, multiple uncertainties exist in big data processing because of some inevitable shortages in big data, such as high dimension, mixed, imprecision, and so on. Data combination is the final step of the 3D prospectivity modeling. The uncertainty within this final step would directly affect the modeling results and influence the further exploration and risk evaluation. This paper takes Zhonggu orefield which is located in Ningwu basin, the Middle and Lower Yangtze River metallogenic belt as an example, to measure the uncertainty caused by exploration criteria and mathematic model on big data and detect its effect on 3D prosepctivity modeling results quantitatively based on the big data thinking. The results show that the uncertainty about the fault, anticlinal axis and other exploration criteria will affect the results of 3D prospectivity modelling strongly, and compared with other data combination models, Logistic regression model may has a higher uncertainty. The further work can focus on the enhancement of the reliable and efficiency of the exploration criteria above, and using more data combination models to evaluate the uncertainty to get more reliable and efficient 3D prosepctivity modeling results to provide support and help for reducing the risk of deep exploration.
Keywords:Uncertainty  Big data  Data fusion  3D prospectivity modeling
本文献已被 CNKI 等数据库收录!
点击此处可从《岩石学报》浏览原始摘要信息
点击此处可从《岩石学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号