首页 | 本学科首页   官方微博 | 高级检索  
     

基于面向对象的降水粒子识别研究
引用本文:刘陈帅,陈生. 基于面向对象的降水粒子识别研究[J]. 热带气象学报, 2023, 0(4): 593-602
作者姓名:刘陈帅  陈生
作者单位:1.中山大学大气科学学院,广东珠海510275;2.广东省气候变化与自然灾害研究重点实验室,广东珠海519082;3.热带大气海洋系统科学教育部重点实验室,广东珠海519000;4.南方海洋科学与工程广东省实验室(珠海),广东珠海519082;5.中国科学院西北生态环境资源研究院黑河遥感站和甘肃省遥感重点实验室,甘肃兰州730000
基金项目:国家自然科学基金项目(41875182);;广西自然科学基金项目(2020GXNSFAA238046);;中山大学“百人计划”项目(74110-18841203);
摘    要:双偏振雷达的主要用途之一就是降水粒子识别,目前主流的方法为模糊逻辑分类(FL),但是该方法仅使用单个距离库的信息,易受到噪声的影响。基于模糊逻辑方法的不足,利用聚类分析,提出了一种面向对象的降水粒子分类方法,即在模糊逻辑分类基础上考虑距离库与不同降水粒子的距离以及周围距离库类别信息。基于广州S波段双偏振雷达的观测数据进行降水粒子识别验证,结果表明使用的面向对象的降水粒子识别方法可有效地降低噪声对分类结果的影响,且符合降水粒子的微物理特征。

关 键 词:面向对象  降水粒子识别  模糊逻辑分类  Kmeans聚类

OBJECT-ORIENTED HYDROMETEOR CLASSIFICATION BASED ON POPLARIMETRIC RADAR OBSERVATIONS
LIU Chenshuai,CHEN Shen. OBJECT-ORIENTED HYDROMETEOR CLASSIFICATION BASED ON POPLARIMETRIC RADAR OBSERVATIONS[J]. Journal of Tropical Meteorology, 2023, 0(4): 593-602
Authors:LIU Chenshuai  CHEN Shen
Affiliation:1.School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China;2.Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai, Guangdong 519082, China;3.Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai, Guangdong 519000, China;4.Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong 519028, China; 5.Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Abstract:One of the main uses of dual-polarization radar is hydrometeor classification. At present, the mainstream hydrometeor classification algorithm is fuzzy logic classification (FL), but this method only uses information from a range bin, which is vulnerable to noise. Based on the limitation of the fuzzy logic method, this paper employs cluster analysis and proposes an object-oriented precipitation particle classification method, which considers the distance between the distance database and different hydrometeor and the surrounding range bin category information based on fuzzy logic classification. To verify the accuracy of hydrometeor classification, the observed data from the Guangzhou S-band dual-polarization radar is utilized in this paper. The results show that the object-oriented hydrometeor classification algorithm used in this paper can effectively reduce the impact of noise on the classification results, and the classification results are consistent with the microphysical characteristics of hydrometeors.
Keywords:object-oriented   hydrometeor classification   fuzzy logic classification   k-means clustering
点击此处可从《热带气象学报》浏览原始摘要信息
点击此处可从《热带气象学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号