首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of the action on a warm convective cloud by hygroscopic particles
Authors:A S Drofa
Institution:(1) NPO Taifun, pr. Lenina 82, Obninsk, Kaluga oblast, 249038, Russia
Abstract:A one-dimensional numerical model of a warm convective cloud is presented. This model is used to study the effectiveness of the action on the cloud by hygroscopic particles with the aim of intensifying precipitation. The numerical simulation takes into account the processes of condensation, coagulation, and sedimentation of cloud droplets and makes it possible to obtain spatiotemporal characteristics of cloud development. A system of differential equations describing time variations in the temperature, pressure, and watervapor supersaturation during the adiabatic rise of a continuous air flow is solved. The evolution of the size distribution of cloud droplets is described by a kinetic equation. A continuous acting source of droplets with the size distribution calculated with consideration for condensation properties and dispersion characteristics of condensation nuclei (natural and additionally introduced during the action) is specified at the cloud-base level. The cloud top is formed owing to the evaporation of droplets in the barrier atmospheric layer over the cloud. The influence of changes in the barrier-layer height on the structure of cloud parameters and precipitation-formation processes is analyzed. The introduction of additional hygroscopic particles into a cloud is shown to act as a trigger mechanism initiating the processes of coagulation and sedimentation in the cloud medium. In this case, a positive effect of action by fine particles can be achieved if a certain reserve of sufficiently large droplets is present in the cloud. The results of calculating the dependence of the action effect on the height of the barrier layer, restricting cloud development, are presented.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号