首页 | 本学科首页   官方微博 | 高级检索  
     


Ferric Iron in CaTiO3 Perovskite as an Oxygen Barometer for Kimberlitic Magmas I: Experimental Calibration
Authors:Bellis, Anthony   Canil, Dante
Affiliation:School of Earth and Ocean Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8W 3P6, Canada
Abstract:A method to estimate the oxygen fugacity (fO2) during the crystallizationof kimberlites is developed using the Fe content of CaTiO3 perovskite(Pv), a common groundmass phase in these rocks. With increasingfO2, more Fe exists in the kimberlitic liquid as Fe3+, and thuspartitions into Pv. Experiments to study the partitioning ofFe between Pv and kimberlite liquid were conducted at 100 kPaon simple and complex anhydrous kimberlite bulk compositionsfrom 1130 to 1300°C over a range of fO2 from NNO –5 to NNO + 4 (where NNO is the nickel–nickel oxide buffer),and at Nb and rare earth element (REE) contents in the startingmaterials of 0–5 wt % and 1500 ppm, respectively. Thepartitioning of Fe between Pv and kimberlite liquid is influencedmostly by fO2, although the presence of Nb increases the partitionof Fe3+ into perovskite at a given T and fO2. Multiple linearregression (MLR) of all the experimental data produces a relationshipthat describes the variation of Fe and Nb in Pv with fO2 relativeto the NNO buffer:

Formula

(uncertaintiesat 2{sigma}, and Nb and Fe as cations per three oxygens). Over therange of conditions of our experiments, this relationship showsno temperature (T) dependence, is not affected by the bulk Fecontent of the kimberlite starting material and reproduces experimentaldata to within 1 log fO2 unit. KEY WORDS: kimberlites; oxygen fugacity; perovskite; ferric iron; magma
Keywords:: kimberlites   oxygen fugacity   perovskite   ferric iron   magma
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号