首页 | 本学科首页   官方微博 | 高级检索  
     

中国市级人口增长的多因素空间建模分析
引用本文:芦蕊,马廷. 中国市级人口增长的多因素空间建模分析[J]. 地球信息科学学报, 2018, 20(7): 939-946. DOI: 10.12082/dqxxkx.2018.180135
作者姓名:芦蕊  马廷
作者单位:1. 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 1001012. 中国科学院大学,北京 100049
基金项目:国家自然科学基金项目(41771418)
摘    要:本文以中国市域单元为研究对象,利用1990-2010年人口普查数据,采用探索性空间数据分析的方法,分析了过去20 年间中国市级人口增长率的空间分布特征和多变量的空间依赖关系。使用空间计量模型和空间滤波后的经典线性回归模型分别探究了经济、气候、地形、社会文化等因素对中国市级人口增长率的影响。模型对比结果显示,经过空间滤波后的经典线性回归模型能够更好的模拟中国市级人口增长率的变化。在该模型中,经济因素是影响中国城市人口增长率的主要因素,例如代表城市经济发展水平的城市夜光指数密度。气候因素对人口增长率也有着不可忽视的作用,如七月热指数随着等级的提升对人口增长率有着越来越强的负向影响。研究结果表明:人口的区域增长模式是多要素综合作用的结果,在相关建模研究和政策制定中需要重点考虑经济发展水平和气候条件因素对人口增长趋势的不同影响。

关 键 词:人口增长  影响因素  探索性空间数据分析  空间自回归  空间滤波  
收稿时间:2018-03-15

Spatially Modeling of Multiple Factors for City-level Population Growth in China
LU Rui,MA Ting. Spatially Modeling of Multiple Factors for City-level Population Growth in China[J]. Geo-information Science, 2018, 20(7): 939-946. DOI: 10.12082/dqxxkx.2018.180135
Authors:LU Rui  MA Ting
Affiliation:1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:This paper is aimed at exploring the determinants of population growth in Chinese urban areas. With the method of exploratory spatial data analysis and the data of traditional population census between 1990 and 2010, we could delve into the spatial distribution characteristics of the population growth rate and the multivariable spatial dependency during the past twenty years in Chinese city-level. Based on a thorough interpretation of population data, we are able to discover an existing spatial dependency between different cities. Obviously, spatial relations should not be negligible, because the spatial dependency is much stronger within cities living in shorter distance. It is more reasonable to use spatial regression model for our work, therefore, we use spatial lag regression model, spatial error model and classical linear regression model with spatial filtering to explore the influences of economic factors, climate factors, sociocultural factors and topography factors on population growth rate. It is showed that the classical linear regression model with spatial filtering can simulate the urban population growth rate batter than other models in our outcomes. The findings also suggest that economy is the most pivotal factors in population growth, such as the total amount of economy reflected by density of urban nightlight index plays an important role in driving population growth. Meanwhile other factors are following as well. Climatic variation is another systematic and significant factor affecting the rates of urban population growth. Some weather-related movement appears. People are willing to leave the unpleasant places and move to the places with nice weather. For example, with the increase of July heat index, there is a more and more stronger negative impact on population growth. The research shows that Chinese population growth is a complex question. There is a comprehensive action of multi-factor in generating the model of regional population growth. It is necessary to consider the different effects of economic development and climate conditions on the population growth in the researches on corresponding modeling and formulation of policy.
Keywords:population growth  influence factors  exploratory spatial data analysis  spatial regression  spatial filtering  
本文献已被 CNKI 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号