摘 要: | 完备总体经验模态分解(CEEMD)克服了经验模态分解(EMD)的模态混叠问题,依据信号自身的特点,将待分析的复杂信号分解为一系列不同尺度的固有模态函数(IMF)的子信号,且各IMF分量的频率由高到低依次排列,是一种适用于分析处理非线性非平稳信号的强大的信号分析技术.地震资料中的随机噪声一般属于高频率的信号,在CEEMD中往往分布在前几个高频IMF分量,本文针对基于CEEMD的分频去噪和基于CEEMD的小波阈值去噪等方法的不足,在前人基于EMD阈值去噪的基础上设计了自相关函数统计特性与CEEMD全局阈值联合去噪方法.该方法先对CEEMD分解的若干个模态分量进行自相关,寻找到噪声主导模态和信号主导模态,然后利用设计的全局阈值对噪声主导模态进行去噪,最后将处理后和未处理的固有模态函数进行重构,得到最终的去噪结果.模型试算和实际地震资料处理都验证了此方法在提高信噪比,保留原信号高频有效成分和弱信号信息上的有效性.
|