首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of two WAM white capping parameterizations using parallel unstructured SWAN with application to the Northern Gulf of Mexico, USA
Authors:S Mostafa Siadatmousavi  F JoseGW Stone
Institution:
  • a Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
  • b Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803, USA
  • Abstract:The performance of two well accepted formulations for white capping and wind input of third generation wave models, viz., WAM-3 and WAM-4, were investigated using parallel unstructured SWAN (PunSWAN). Several alternative formulations were also considered to evaluate the effects of higher order steepness and wave number terms in white capping formulations. Distinct model configurations were calibrated and validated against available in situ measurements from the Gulf of Mexico. The results showed that some of the in situ calibrated models outperform the saturation level calibrated models in reproducing the idealized wave growth curves. The simulation results also revealed that increasing the power of the steepness term can enhance the accuracy of significant wave height (Hs), at the expense of a higher bias for large waves. It also has negative effects on mean wave period (Ta) and peak wave period (Tp). It is also demonstrated that the use of the quadratic wave number term in the WAM-3 formulation, instead of the existing linear term, ameliorates the Ta underestimation; however, it results in the model being unable to reach any saturation level. In addition, unlike Hs and Tp, it has been shown that Ta is sensitive to the use of the higher order WAM-4 formulation, and the bias is decreased over a wide range of wave periods. However, it also increases the scatter index (SI) of simulated Ta. It is concluded that the use of the WAM-4 wind input formulation in conjunction with the WAM-3 dissipation form, is the most successful case in reproducing idealized wave growth curves while avoiding Ta underestimation of WAM-3 and a potential spurious bimodal spectrum of WAM-4; consequently, this designates another perspective to improve the overall performance of third generation wave models.
    Keywords:White capping  Parallel unstructured SWAN  WAM  Saturation spectrum  Gulf of Mexico
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号