首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The normative mineralogy of 10 soil profiles in Fennoscandia and north-western Russia
Authors:R Salminen  V Gregorauskiene  T Tarvainen
Institution:aGeological Survey of Finland, P.O. Box 96, FIN-02151 Espoo, Finland;bGeological Survey of Lithuania, S:Konarskio g. 35, LT-03123 Vilnius, Lithuania;cVilnius University, M.K.Čiurlionio g. 21/27, LT-03101 Vilnius, Lithuania
Abstract:The mineralogical composition of soil horizons in different soil types of different ages was estimated by applying the NORMA software, which was developed originally for calculating the normative mineralogical composition of young podsols. Ten soil profiles from six sites in NW Russia, two in Finland, and one in NE Norway were sampled in 1999 as a part of the pilot phase of a large geochemical mapping project. Total element concentrations were determined from the <2 mm fraction by XRF from powdered pellets for Al, Ca, Cr, Fe, K, Mg, Mn, Na, P, S, Si, Ti, and Zr, and for Ba by ICP-AES after HF+HClO4 extraction. Extractable concentrations for Al, Ca, Cr, Fe, K, Mn, Mg, Na, P, S, Ti, Zr, and Ba were determined by ICP-MS or ICP-AES after aqua regia (a 1:3 mixture of strong HCl and HNO3) extraction. Total C was determined using a thermal conductivity detector from a sample burned in an O2 stream. The NORMA software was used to calculate the percentage of normative soluble minerals pyrite, apatite, titanite, calcite, biotite, chlorite, weathered albite, hydrous Al-silicate, goethite and soluble residue. The percentages of non-soluble normative minerals rutile, hornblende, K-feldspar, albite, anorthite, tremolite, wollastonite, kaolinite, magnetite, zircon, quartz, carbon (graphite), and non-soluble residue were calculated after soluble minerals.The calculated mineralogical composition of C-horizon samples in each profile reflected the known geological composition of the bedrock from which the soil parent material was derived during geological processes. Secondary minerals including goethite and hydrous Al-silicates, were detected in upper soil horizons reflecting the development of soils. Rather than age, the local bedrock geology together with the mineralogical composition and chemical properties of the parent material proved to be the controlling factor in the formation of secondary minerals. The results showed that the NORMA method can be used in defining the mineralogy of soil horizons in a large variety of soil types.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号