首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Long-term persistence of solar activity
Authors:Alexander Ruzmaikin  Joan Feynman  Paul Robinson
Institution:(1) Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Str., 91330 Northridge, CA, USA;(2) Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., 91109 Pasadena, CA, USA
Abstract:The solar irradiante has been found to change by 0.1% over the recent solar cycle. A change of irradiante of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Hürst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of14 C data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Hürst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate,H ≈ 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that it is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process. The full paper has been submitted to Solar Physics. Part of the research decribed here was carried out by JPL, Caltech under a contract with NASA.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号