首页 | 本学科首页   官方微博 | 高级检索  
     


An algorithm for the optimum design of braced and unbraced steel frames under earthquake loading
Authors:  lten Gü  lay,Hasan Boduro  lu
Affiliation:Gülten Gülay,Hasan Boduroǧlu
Abstract:A solution technique based on the sequential linear programming (SLP) method is presented for the optimum design of braced and unbraced steel frames in seismic regions. First, the optimum rigidity distribution of the frames under static loading is computed, then the optimization procedure is repeated under the combined loading, setting lower bounds on the optimum static cross-sectional areas and increasing allowable stresses. The stiffness, stress, displacement and side constraints are included in the optimization problem. As a result, a highly non-linear mathematical programming problem is produced. A non-linear programming algorithm is offered for the solution which is based on the successive linearization of non-linear expressions and employs the simplex routine in an iterative manner. Design variables are chosen to be the free nodal displacements and the cross-sectional areas of the members, while the objective function is taken to be the minimization of the total volume of the structure. As numerical applications, optimum weights of several frames (unbraced, concentrically and eccentrically braced) under static and combined loading cases are computed and the results are compared with those available in the literature.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号