首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemical and mantle-like isotopic (Nd, Sr) composition of the Baklan Granite from the Muratdağı Region (Banaz, Uşak), western Turkey: Implications for input of juvenile magmas in the source domains of western Anatolia Eocene–Miocene granites
Authors:M Selman Aydoan  Hakan oban  Mustafa Bozcu   mer Ak&#x;nc&#x;
Institution:aDepartment of Geological Engineering, Balıkesir University, TR-10145 Balıkesir, Turkey;bDepartment of Geological Engineering, Süleyman Demirel University, TR-032260 Isparta, Turkey;cDepartment of Geological Engineering, Çanakkale Onsekiz Mart University, TR-17020 Çanakkale, Turkey;dHavacı Bnb. Mehmet Sokak 9/12 Bostancı TR-34744 İstanbul, Turkey
Abstract:The (late syn)- post-collisional magmatic activities of western and northwestern Anatolia are characterized by intrusion of a great number of granitoids. Amongst them, Baklan Granite, located in the southern part of the Muratdağı Region from the Menderes Massif (Banaz, Uşak), has peculiar chemical and isotopic characteristics. The Baklan rocks are made up by K-feldspar, plagioclase, quartz, biotite and hornblende, with accessory apatite, titanite and magnetite, and include mafic microgranular enclaves (MME). Chemically, the Baklan intrusion is of sub-alkaline character, belongs to the high-K, calc-alkaline series and displays features of I-type affinity. It is typically metaluminous to mildly peraluminous, and classified predominantly as granodiorite in composition. The spider and REE patterns show that the rocks are fractionated and have small negative Eu anomalies (Eu/Eu* = 0.62–0.86), with the depletion of Nb, Ti, P and, to a lesser extent, Ba and Sr. The pluton was dated by the K–Ar method on the whole-rock, yielded ages between 17.8 ± 0.7 and 19.4 ± 0.9 Ma (Early Miocene). The intrusion possesses primitive low initial 87Sr/86Sr ratios (0.70331–0.70452) and negative εNd(t) values (−5.0 to −5.6). The chemical contrast between evolved Baklan rocks (SiO2, 62–71 wt.%; Cr, 7–27 ppm; Ni, 5–11 ppm; Mg#, 45–51) and more primitive clinopyroxene-bearing monzonitic enclaves (SiO2, 54–59 wt.%; Cr, 20–310 ppm; Ni, 10–70 ppm; Mg#, 50–61) signifies that there is no co-genetic link between host granite and enclaves. The chemical and isotopic characteristics of the Baklan intrusion argue for an important role of a juvenile component, such as underplated mantle-derived basalt, in the generation of the granitoids. Crustal contamination has not contributed significantly to their origin. However, with respect to those of the Baklan intrusion, the generation of the (late syn)- post-collisional intrusions with higher Nd(t) values from the western Anatolia require a much higher amount of juvenil component in their source domains.
Keywords:Baklan Granite  I-type  Mantle input  Juvenile crust  Muratdağ  ı  Region    ak  Western Anatolia
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号