首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of an arc-shaped precipitation system during the pre-monsoon period in Bangladesh
Authors:M Rafiuddin  Hiroshi Uyeda  Masaya Kato
Institution:1. Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
2. Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan
Abstract:A numerical simulation is performed to understand the features and development processes of the arc-shaped precipitation system that dominates in Bangladesh during the pre-monsoon (March–May) period. An arc-shaped precipitation system of 26 April 2002 is simulated using the Cloud Resolving Storm Simulator (CReSS) with a horizontal grid increment of 2 km. The Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model is used for downscaling. Hourly outputs of the finest domain (grid increment of 5 km) of MM5 and National Oceanic and Atmospheric Administration Reynolds weekly mean sea surface temperature data are used as the initial and boundary conditions for CReSS. Younger and more intense cells are formed in the southwestern end of the system. These cells move northeastward and merge with the system producing intense rainfalls. Simulation results indicate that low-level southwesterly or southerly wind brings warm moist air from the Bay of Bengal and helps develop new cells. The propagation speed of the system is 8 m/s, and the northeastern end moves faster than the southwestern end, creating clockwise rotation of the system. The propagation speed and the rotation of the simulated system coincide well with radar observations. The clockwise rotation of the system can be explained by the stronger (weaker) outflow and weaker (stronger) inflow in the northeastern (southwestern) end. The propagation of the system is attributable to the weak (≤7 m/s, storm relative) rear-to-front flow in the moist environment. Thus, the arc-shaped precipitation system common to the pre-monsoon period in Bangladesh develops through a balance of strong southwesterly or southerly moist inflow in the low altitudes below 2 km and relatively weak outflow in the rear of the system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号