首页 | 本学科首页   官方微博 | 高级检索  
     

基于像元二分模型的森林郁闭度遥感估算
引用本文:刘丹丹,田静,高延平,梅晓丹,朱继文. 基于像元二分模型的森林郁闭度遥感估算[J]. 测绘与空间地理信息, 2018, 0(2): 31-33,39. DOI: 10.3969/j.issn.1672-5867.2018.02.009
作者姓名:刘丹丹  田静  高延平  梅晓丹  朱继文
作者单位:黑龙江工程学院 测绘工程学院 黑龙江 哈尔滨150050
基金项目:黑龙江省教育厅科学技术研究项目计划
摘    要:实现森林郁闭度的高精度估测,对于森林资源的监测与管理具有非常重要的意义。本文以小兴安岭带岭林业实验管理局为研究区,基于植被指数的像元二分模型进行了森林郁闭度的遥感反演,结果表明:模型的预估精度达到89.01%,决定系数R2达到0.859,RMSE为0.039,模型的一致性较好,可以实现大区域范围森林郁闭度的监测,满足了林业经营管理的需求。

关 键 词:森林郁闭度  Landsat-TM  像元二分模型  forest canopy density  Landsat-TM  dimidiate pixel model

Estimate of Forest Canopy Density Based on the Dimidiate Pixel Model by Using Remote Sensing Imagery
LIU Dandan,TIAN Jing,GAO Yanping,MEI Xiaodan,ZHU Jiwen. Estimate of Forest Canopy Density Based on the Dimidiate Pixel Model by Using Remote Sensing Imagery[J]. Geomatics & Spatial Information Technology, 2018, 0(2): 31-33,39. DOI: 10.3969/j.issn.1672-5867.2018.02.009
Authors:LIU Dandan  TIAN Jing  GAO Yanping  MEI Xiaodan  ZHU Jiwen
Abstract:The high accuracy estimate of forest canopy is very important for the monitor and manages of forest resources. The study area was located in Dailing Forestry operation management zone. According to remote sensing and forest resource inventory data, dimidiate pixel model based on normalized difference vegetation index ( NDVI) was used to estimate the forest canopy density. Though the veri-fication, the predict accuracy of model is reached 89. 01%, the correlation coefficient is 0. 859 and root meant square error is 0. 039 between estimated value and measured value. The result of forest canopy density model has a good consistency and it can use in large area for monitor and manage forest resource.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号