首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Short term variability of atmospheric turbidity and optical turbulence in a desert environment
Authors:F D Eaton  J R Hines  J J Drexler  D B Soules
Institution:(1) US Army Research Laboratory, New Mexico, USA;(2) Lockheed Engineering & Sciences Company, New Mexico, USA
Abstract:Summary Variability of atmospheric turbidity calculated from direct beam solar radiation measurements and the transverse coherence length,r 0, derived from differential image motion of stellar sources show pronounced fluctuations on the order of a few minutes under convectively unstable conditions in a desert environment. The quiescent periods, ldquoneutralrdquo events, when local near surface adiabatic conditions occur show substantial reductions in the fluctuations of the same quantities. Image motion results for nighttime (stable) conditions display slowing varying patterns with reduced short term (few minutes) variations.The measurements were taken using a suite of instrumentation probing the same volume of atmosphere. The instrumentation used includes a pyrheliometer, Atmospheric Turbulence Measurement and Observation System (ATMOS), a sodar, a scintillometer, and tower- mounted sensors. A time-height display of sodar data calibrated for the refractive index structure parameter,C n 2 , coupled with scintillometer measurements show the diurnal evolution of the boundary layer responding to the local heating-cooling cycle and drainage flows from the surrounding mountains. Several atmospheric features are seen and discussed in these results as they affect the nature of the patterns of turbidity andr 0. Of particular interests are the development of convection, changes in the capping inversion, thermal plume structures, neutral events, and wave-turbulence interactions. Sinusoidal oscillations, identified as internal gravity waves, are seen in the nighttime laminated structures.With 10 Figures
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号