首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
Authors:Fi-John Chang  Ya-Ting Chang
Affiliation:Department of Bioenvironmental Systems Engineering and Hydrotech Research Institute, National Taiwan University, Roosevelt Road, Taipei 10770, Taiwan, ROC
Abstract:Accurate prediction of the water level in a reservoir is crucial to optimizing the management of water resources. A neuro-fuzzy hybrid approach was used to construct a water level forecasting system during flood periods. In particular, we used the adaptive network-based fuzzy inference system (ANFIS) to build a prediction model for reservoir management. To illustrate the applicability and capability of the ANFIS, the Shihmen reservoir, Taiwan, was used as a case study. A large number (132) of typhoon and heavy rainfall events with 8640 hourly data sets collected in past 31 years were used. To investigate whether this neuro-fuzzy model can be cleverer (accurate) if human knowledge, i.e. current reservoir operation outflow, is provided, we developed two ANFIS models: one with human decision as input, another without. The results demonstrate that the ANFIS can be applied successfully and provide high accuracy and reliability for reservoir water level forecasting in the next three hours. Furthermore, the model with human decision as input variable has consistently superior performance with regard to all used indexes than the model without this input.
Keywords:Adaptive neuro-fuzzy inference system (ANFIS)   Artificial neural networks   Water level forecasting   Reservoir management   Control and prediction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号