首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of an altered salinity regime on the population structure of two infaunal bivalve species
Authors:Rebecca J McLeod  Stephen R Wing
Institution:Department of Marine Science, University of Otago, 310 Castle Street, Dunedin, New Zealand
Abstract:Hydrological alterations in watersheds have changed the flows of freshwater to many nearshore marine environments. The ensuing alterations to the salinity environment of coastal waters may have implications for species distribution. This study describes the response of two common bivalves to a modified salinity environment imposed by freshwater inputs from a hydroelectric power station in Doubtful Sound, New Zealand. Populations of Austrovenus stutchburyi and Paphies australis inhabiting river deltas near the outflow of the power station in inner Doubtful Sound were more than an order of magnitude smaller in abundance than populations in neighbouring Bradshaw Sound where the salinity regime is unaltered. In addition, there was a lack of small size classes of both species in inner Doubtful Sound, suggesting that these populations are unsustainable over the long term (10–20 years). Laboratory experiments demonstrated that sustained exposure (>30 days) to low salinity (<10) significantly decreased bivalve survivorship; however, both species survived periods of exposure to freshwater up to at least 20 days in duration if followed by a period of return to normal seawater salinity. Examination of the extant salinity regime in light of these results indicates the current salinity environment in Doubtful Sound restricts bivalves to deeper waters (5–6 m depth). The observed discrepancy in the total biomass of these active suspension feeders between altered and control sites has potential implications for the flux of organic matter in the food webs of Fiordland's shallow soft sediment communities.
Keywords:infaunal bivalves  population structure  salinity stress  environmental change  Austrovenus stutchburyi  Paphies australis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号