首页 | 本学科首页   官方微博 | 高级检索  
     


On a dynamo driven topographically by longitudinal libration
Authors:Cheng-Chin Wu  Paul H. Roberts
Affiliation:1. Institute of Geophysics and Planetary Physics , University of California , Los Angeles , CA 90095 , USA CCWu@UCLA.edu;3. Institute of Geophysics and Planetary Physics , University of California , Los Angeles , CA 90095 , USA
Abstract:Variation in the angular velocity Ω of a planetary body is called libration or longitudinal libration when the Ω-axis is fixed in direction. This motion of the body's solid mantle drives motions in its fluid core, either by viscous coupling across the core-mantle interface S, or topographically when S is asymmetric with respect to the Ω-axis, the only case considered in this article. A significant topographically-driven flow is identified having uniform vorticity within S and no component parallel to the Ω-axis. Its dynamic stability depends on the amplitude, Ω 1, of the sinusoidally varying part of Ω and on the ratio, b/a, of the lengths of the principal axes of S, assumed spheroidal. In (Ω 1/Ω 0, b/a) parameter space where Ω 0 is the average Ω, islands are shown to exist where the constant vorticity states are dynamically unstable. These are surrounded by a sea in which they are stable. When the fluid is slightly viscous, a state in the stable sea retains its uniform vorticity structure except in a viscous boundary layer on S in which the flow acquires a component parallel to the Ω-axis. For (Ω 1/Ω 0, b/a) on an island where the uniform vorticity state is unstable, an “alternative flow” exists, which is three-dimensional and is examined here. Assuming that the core is electrically conducting, kinematic dynamos are sought. Uniform vorticity flow appears to be non-regenerative but, when it is stable and viscosity acts to create a sufficiently strong boundary layer flow, dynamo action may occur. It is shown that the alternative flow that exists on an instability island in (Ω 1/Ω 0,?b/a) space can be vigorously regenerative.
Keywords:Rotating fluids  Longitudinal libration  Kinematic dynamo
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号