首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Buoyant boundary layer flows- an analogy to the Ekman spiral
Authors:Jae Min Hyun
Institution:Department of Mechanical Engineering , Clarkson College of Technology , Potsdam , New York , 13676
Abstract:Abstract

Flow details inside the buoyant boundary layer in the heat-up process of a contained, stably stratified, fluid are presented. Numerical solutions were obtained for the heatup problem in a cylinder considered by Sakurai and Matsuda (1972). By plotting the scaled vertical velocity W versus the scaled temperature θ as functions of the normal distance from the sidewall, the precise shape of the buoyant layer spiral is constructed. The analogy between this spiral and the Ekman spiral in rotating fluids is apparent. As the Rayleigh number Ra increases, the magnitude of the scaled vertical velocity increases substantially, but the scaled temperature does not vary appreciably. The buoyant layer thickness is determined by measuring the zero-crossing normal distance for the vertical velocity. The buoyant layer suction increases significantly as Ra increases. The effects of vertical level and of time on the qualitative behavior of buoyant layer flows are found to be small. The buoyant layer flows decay over the heat-up time scale t n ; t h characterizes the time span over which the overall adjustment process in the inviscid interior region is accomplished. This work clarifies that the analogy between heat-up and spin-up, which has been known to exist in the main body of inviscid fluid, applies equally well to the boundary layer regions.
Keywords:Separation  rotating fluid  sliced cylinder  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号