首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of anisotropic heat transport in the earth's core on the geodynamo
Authors:John T Donald  & Paul H Roberts
Institution:1. roberts@math.ucla.edu
Abstract:Intermediate dynamos are axisymmetric, spherical models that evade Cowling's theorem by invoking an α-effect to create the meridional magnetic field from the zonal. Usually the energy source maintaining the motions is a specified thermal wind, but here the dynamo is driven by the buoyancy created by a uniform distribution of heat sources. It has been argued by Braginsky and Meytlis (this journal, vol. 55, 1990) that, in a rapidly rotating, strongly magnetic system such as the Earth's core, heat is transported principally by a small-scale turbulence that is highly anisotropic. They conclude that the diffusion of heat parallel to the rotation axis is then significantly greater than it is in directions away from that axis. A preliminary study of the consequences of this idea is reported here. Solutions are derived numerically using both isotropic and non-isotropic thermal diffusivity tensors, and the results are compared. It is shown that even a small degree of anisotropy can materially alter the character of the dynamo.
Keywords:Earth's core  Geodynamo theory  Intermediate dynamos  αω-dynamos  Anisotropic turbulence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号