首页 | 本学科首页   官方微博 | 高级检索  
     检索      


http://www.sciencedirect.com/science/article/pii/S1674987112001533
Authors:Eugenio Aragon  Lucio Pinotti  Fernando D'Eramo  Antonio Castro  Osvaldo Rabbia  Jorge Coniglio  Manuel Demartis  Irene Hernando  Claudia E Cavarozzi  Yolanda E Aguilera
Institution:Eugenio Aragon(a,b,*),Lucio Pinottic,Fernando D’Eramoc,Antonio Castrod,Osvaldo Rabbiae, Jorge Coniglioc,Manuel Demartisc,Irene Hernando(a,b),Claudia E.Cavarozzi(a,b), Yolanda E.Aguilera(b,f) a Centro de Investigaciones Geologicas(UNLP-CONICET).1 N°644.(1900) La Plata.Buenos Aires.Argentina b Facultad de Ciencias Naturales y Museo.Universidad Nacional de la Plata.122 y 60.s/n.(1900).La Plata.Buenos Aires.Argentina c Departamento de Geologia.Universidad Nacional de Rio Cuarto.(UNRC-CONICET).Ruta 36 km 601.Rio Cuarto.Cordoba.Argentina d Departamento de Geologia,Universidad de Huelva.21071 Huelva.Spain e Instituto de Geologia Economica Aplicada.Universidad de Concepcion.Concepcion.Chile f Direccion de Aplicacion de imagenes Satelitarias(M.O.S.P.),58 e/7 y 8.piso 2.1900.La Plata.Buenos Aires.Argentina
Abstract:The collision of a divergent ocean ridge may evolve into two end cases: in the continuity of ocean-floor subduction, or in the detachment of the subducted plate. The northern Patagonia active plate margin has the unique situation that in Cenozoic time it has been subjected to two divergent ridge collisions, each one representing one of the end members. The Neogene Antarctica-Nazca divergent ridge collision evolved as a continuous ocean-floor subduction system, promoting a magmatic hiatus at the arc axis, the obduction of part of the ridge ocean-floor in the fore-arc, and basaltic volcanism in the back-arc. In contrast, the Paleogene Farallon-Aluk divergent ridge collision evolved into a transform margin, with the detachment and sinking of the Aluk plate and the development of a large slab window. As in the previous case, this collision promoted a magmatic hiatus at the arc axis, but the tectono-magmatic scenario changed to postorogenic synextensional volcanism that spread to the former fore-arc (basalt, andesite, rhyolite) and former back-arc (bimodal ignimbrite flare-up, basalt). Geochemistry of this slab window synextensional volcanism shows more MORB-like basalts towards the former fore-arc, and MORB-OIB-like basalts towards the former back-arc. Instead, an isolated undeformable crustal block in the former back-arc, with an “epeirogenic” response to the slab window and extensional regime, was covered by OIB-type basalts after uplift. Major elements show that slab window basalts reach TiO2 values up to 3 wt%, as compared with the top value of 1.5 wt% of arc magmas. Besides, the MgO with respect to (FeOt + Al2O3) ratio helps to distinguish slab window magma changes from the former fore-arc to the former back-arc and also with respect to the “epeirogenic” block. Higher contents of HFS elements such as Nb and Ta also help to distinguish this slab window from arc magmas and also, to distinguish slab window magma changes from the former fore-arc to the former back-arc and “epeirogenic” block settings. The isotope compositions of slab window magmatism show a disparate coeval array from MORB to crustal sources, interpreted as a consequence of the lack of protracted storage and homogenization due to the extensional setting.
Keywords:AndesActive ridge collisionSubduction-transform transitionSlab window volcanismSynextensional calc-alkalineBimodal volcanism
本文献已被 CNKI 维普 ScienceDirect 等数据库收录!
点击此处可从《地学前缘(英文版)》浏览原始摘要信息
点击此处可从《地学前缘(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号