首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the compositions and characteristics of the mare basalt magmas and their source regions
Authors:Alan B Binder
Institution:1. Institut für Geophysik, Neue Universitat, Kiel, FRD
Abstract:Based on a synthesis of available mare basalt data, it is shown that the samples which were returned to Earth via the various Apollo and Luna missions were derived from at least 16 separate eruptive events. The currently published data are sufficient to allow reasonably good estimates of the compositions of the parental magmas of 12 of these units to be made. At the present, only first order estimates of the compositions of the magmas of the remaining four units are possible.It is further shown that, when these 16 magmas are plotted on the pseudo-ternary phase diagram for the system anorthite-olivine-quartz and the quaternary phase diagrams for the systems which include augite or ilmenite, the magmas all lie along a common, equilibrium melting path. This path is defined by the high aluminum basalt magmas and the majority of the high TiO2 basalt magmas which plot near the 5kb olivine-pyroxene cotectic and by the high olivine magmas which plot along or near a single olivine control line. The fact that all the high olivine magmas plot near a single olivine control line is a direct consequence of the equilibrium partial melting of an olivine dominated mantle, but is statistically very unlikely (1 chance in 106) if the mantle is dominated by pyroxene as is widely accepted. Based on the reasonable assumption that the degree of partial melting which produced the magmas was no greater than 50%, and noting that the composition of the mantle is constrained to lie on the olivine control line around which the high olivine magmas plot in the ternary and quaternary phase diagrams, then the normative composition of the lunar upper mantle must be about 64% olivine (Fo70), 23% pyroxene, 9% anorthite, and 4% ilmenite - though olivine richer models are possible. This composition is essentially the same as that for pyrolite, the proposed composition of the Earth's mantle. This observation is taken to add further support for the fission origin of the Moon.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号