首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of ultraviolet irradiation on the production and composition of fatty acids in plankton in a sub-Antarctic environment
Authors:Sun-Yong Ha  Hyong-Min Joo  Sung-Ho Kang  In-Young Ahn  Kyung-Hoon Shin
Affiliation:1. Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, 406-840, Korea
2. Department of Marine Sciences and Convergent Technology, Hanyang University, 1271 Sa-3 dong, Sangnok-gu, Ansan, Kyeonggi-do, 425-791, Korea
Abstract:We investigated the effects of ultraviolet-B (UV-B) radiation on the natural phytoplankton assemblage in Marine Cove on King George Island, Antarctica, in December 2005. The amount of newly synthesized phytoplankton polyunsaturated fatty acids (PUFAs) was lower with exposure to full irradiation (PAR+UV-A+UV-B) than without such exposure (exposed instead to PAR+UV-A radiation) in an in situ incubation under the light conditions in two different types of incubation bottles: quartz bottles transmitting all light wavelengths including UV-B and polycarbonate bottles with no UV-B transmission and 20 % reduced PAR compared to the quartz bottle. However, the amount of newly synthesized saturated fatty acids was greater with than without UV-B radiation. Thus, UV-B radiation may have a significant influence on fatty acid synthesis in phytoplankton. In particular, the production of eicosapentaenoic acid [20:5(n-3)] and docosahexaenoic acid [22:6(n-3)] was reduced during incubation under the natural solar radiation including UV-B. To understand the indirect influence of UV-B on herbivores (the secondary producer), we conducted feeding experiments with amphipods fed in situ on the natural phytoplankton assemblage. The amphipods fed on the phytoplankton with the low PUFA values also exhibited a low PUFA accumulation rate, which could negatively affect their growth, development, and reproduction. Consequently, the diminished rate of essential fatty acid synthesis [especially 20:5(n-3) and 22:6(n-3)] in primary producers caused by UV-B exposure could affect the structure and function of the Antarctic marine ecosystem.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号